

ÄKTAcrossflow™ User manual

gelifesciences.com

Table of Contents

1	Introduction			
	1.1	Abbreviatio	ons and terminology	6
	1.2	Important	user information	7
2	ÄKT/	۹crossflo	w applications and crossflow processes	9
	2.1	Principles of	of crossflow filtration	10
	2.2	ÄKTAcross	flow applications	12
		2.2.1	Ultrafiltration	13
		2.2.2	Microfiltration	15
	2.3	The ÄKTAc	rossflow system	17
		2.3.1	Description of system operation	18
		2.3.2	Control modes	19
		2.3.3	Sensors and valves	23
	2.4	Filters		24
	2.5	Associated	documentation	25
3	Syste	em Prepai	ration	26
	3.1	Start the in	strument	27
	3.2	Start UNIC	ORN and connect to the instrument	28
	3.3	Assembling	g filters	33
	3.4	The pump i	rinsing system	37
	3.5	Selectingty	ype of Retentate valve block	43
	3.6	Calibrate t	he level sensor	46
		3.6.1	Calibrate the level sensor using the Method Wizard	47
		3.6.2	Manual calibration of the level sensor	50
	3.7	Calibrate tl	he transfer pressure sensor	52
	3.8	Calibrate tl	he pH electrode	53
	3.9	Calibrate tl	he conductivity cell	55
4	Hand	lling meth	ods in the ÄKTAcrossflow	58
	4.1	AUNICOR	N method	59
	4.2	Creating a	new method	61
		4.2.1	Create crossflow methods using the Method Wizard	62
		4.2.2	Create crossflow methods using Text Instructions	73
5	Perfo	orm cross	flow runs manually	85
	5.1	Executingt	ext instructions	86
	5.2	Monitoring	the run	89
6	Crea	te prepro	duct steps using the Method Wizard	92
	6.1	Preproduct	t steps: Introduction	93
	6.2	Preproduct	t steps: Description	94
	6.3	Preproduct	t steps: Method Wizard dialogs	99
		6.3.1	Basic settings dialog	100
		6.3.2	Preproduct step dialog	106
		6.3.3	Visualization of the preproduct steps	109

7	Crea	te produ	ct steps using the Method Wizard	125
	7.1	Ultrafiltra	ation	126
		7.1.1	Introduction	127
		7.1.2	Basic settings dialog	
		7.1.3	Product steps dialog	129
		7.1.4	Concentration step dialog	
		7.1.5	Diafiltration step dialog	137
		7.1.6	Recovery dialog	
	7.2	Microfiltr	ation	
		7.2.1	Introduction	
		7.2.2	Basic settings dialog	146
		7.2.3	Product steps dialog	
		7.2.4	Concentration step dialog	150
		7.2.5	Diafiltration step dialog	155
		7.2.6	Recovery dialog	159
	7.3	Visualizat	tion of product steps	163
0	Croo	toposto	reduct stops using the Mothod Wizard	176
0	Clea	te postp	i ouuct steps using the Method wizard	170
	8.1	Introduct		
	8.2	Postprod	luct steps: Description	178
	8.3	Postprod	luct steps: Method Wizard dialogs	182
		8.3.1	Postproduct step dialog	183
		8.3.2	Visualization of the postproduct steps	187
9	Proc	ess optir	nization in Ultrafiltration	202
10	Runr	ning ÄKT	Acrossflow methods	
	10.1	Final pror	narations	210
	10.1	Start a ru		
	10.2	Startaru		213
	10.5	During th	e run	
	10.4	Manualsa	ampling during the run	
11	Post	run proc	edures	217
	11.1	System sa	anitization	218
	11.2	Viewinga	and printing the result	224
12	Evalı	uating Äk	KTAcrossflow results using Filtration Analusis	
	121	Oponaro	ocult file in the Evaluation module	228
	12.1	Applysic	esorations	
	12.2		Decesso entimization	
		12.2.1	Process opumization	
		12.2.2	Diaphration time optimization	
		12.2.5	Canacity plots	245
		12.2.4	Any vs Any	
		مر با با با	in a set DID is seen at set	
13				
13	Feed	Dack tur	ling and PID parameters	257
13	Feed 13.1	PID contr	ol	257 258
13	Feed 13.1 13.2	PID contr Descripti	on of the PI parameters and regulators	
13	Feed 13.1 13.2 13.3	PID contr Description Setting up	ol on of the PI parameters and regulators p feedback tuning	

14	Strategy instructions			
	14.1	System settings and instruction boxes	269	
	14.2	Recirculation instructions	272	
	14.3	Permeate instructions	280	
	14.4	Transfer instructions	289	
	14.5	Alarms, Warnings, and Monitors	292	
	14.6	Fraction collector instructions	310	
	14.7	Monitor UPC-980	311	
	14.8	Watch instructions	313	
	14.9	Calibration	314	
15	Syste	em components	317	
	15.1	Pump P-982 and P-984	318	
	15.2	Valves	321	
	15.3	Reservoirs	326	
	15.4	pH electrode and cell holder	328	
	15.5	Monitor UPC-980 and UV cell	329	
	15.6	Conductivity cell	330	
	15.7	Sensors	331	
Α	Appe	ndix A: Membrane and cartridge selection	333	
	_			
B	Appe	ndix B: Tubing specifications	334	
-				
С	Appendix C: Technical specifications 34			
Ind	ex	•••••••••••••••••••••••••••••••••••••••	546	

1 Introduction

About this manual

The ÄKTAcrossflow™ *User Manual* provides instructions for performing crossflow filtration, also called tangential flow filtration, using the automatic ÄKTAcrossflow instrument and UNICORN™ software.

In addition to this manual, all users must also read the entire contents of the *ÄKTAcrossflow Operating Instructions* before installing, operating or maintaining the ÄKTAcrossflow system.

In this chapter

Section		See page
1.1	Abbreviations and terminology	6
1.2	Important user information	7

1.1 Abbreviations and terminology

This section explains the abbreviations that appear in the user documentation for ÄKTAcrossflow.

Term	Explanation		
Cartridge	Also referred to as "Module" or "Cassette"; the unit encapsulat- ing the membrane. The membrane can have different formats, such as flat-sheet cassette or hollow fiber cartridge.		
Flat sheet cas- sette	Example of a unit encapsulating the membrane. A cassette has at least one inlet (feed) and two outlets (retentate and perme- ate).		
Hollow fiber	Example of a unit encapsulating the membrane, with a tube- like structure made from a membrane and sealed inside a crossflow cartridge, with one inlet (feed) and two outlets (re- tentate and permeate).		
Crossflow	Also called tangential flow filtration. In crossflow filtration, the feed solution flows parallel to the surface of the membrane.		
	Driven by pressure, some of the feed solution passes through the membrane filter. Most of the solution is circulated back to the feed tank or reservoir. The movement of the feed solution parallel to the membrane surface helps to remove the buildup of foulants on the surface.		
Cut-off	The effective pore size of the membrane. This is given in MWCO (molecular weight cutoff) for ultrafilters and µm for microfilters. The MWCO size designation for ultrafilters is given in Daltons (D or Da) or kiloDaltons (kD or kDa), referring to the molecular weight of an ideal globular protein that is 90% retained by the membrane. No industry standard exists; hence the MWCO rat- ings of different manufacturers are not always comparable.		
Retentate	The portion of the feed solution that does not pass through a crossflow membrane filter and is returned to the feed tank or reservoir.		
Permeate	Also called the filtrate. The portion of a process fluid that passes through a membrane.		

1.2 Important user information

Read this before operating the product

All users must read the entire *Operating Instructions* before installing, operating or maintaining the product.

Always keep the Operating Instructions at hand when operating the product.

Do not operate the product in any other way than described in the user documentation. If you do, you may be exposed to hazards that can lead to personal injury and you may cause damage to the equipment.

Intended use

ÄKTAcrossflow is intended for research use only, and shall not be used in any clinical procedures, or for diagnostic purposes.

Safety notices

This user documentation contains WARNINGS, CAUTIONS and NOTICES concerning the safe use of the product. See definitions below.

Warnings

WARNING

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury. It is important not to proceed until all stated conditions are met and clearly understood.

Cautions

Notices

NOTICE

NOTICE indicates instructions that must be followed to avoid damage to the product or other equipment.

Notes and tips

- Note: A note is used to indicate information that is important for trouble-free and optimal use of the product.
 Tin: A tip contains useful information that can improve or optimize upur
- *Tip:* A tip contains useful information that can improve or optimize your procedures.

Typographical conventions

Software items are identified in the text by **bold italic** text. A colon separates menu levels, thus **File** \rightarrow **Open** refers to the **Open** command in the **File** menu.

Hardware items are identified in the text by **bold** text (e.g., **Power** switch).

2 ÄKTAcrossflow applications and crossflow processes

About this chapter

This chapter describes ÄKTAcrossflow applications and the principles of crossflow filtration.

In this chapter

Section		See page
2.1	Principles of crossflow filtration	10
2.2	ÄKTAcrossflow applications	12
2.3	The ÄKTAcrossflow system	17
2.4	Filters	24
2.5	Associated documentation	25

2.1 Principles of crossflow filtration

2.1 Principles of crossflow filtration

Normal flow filtration versus crossflow filtration

The ÄKTAcrossflow system is designed for crossflow (also known as tangential flow or "TFF") operation. Unlike normal flow filtration, or dead-ended filtration, crossflow methodology continuously sweeps the membrane surface by recirculating the feed flow parallel to the surface. This sweeping action minimizes blinding of the membrane and promotes consistent, long-term productivity. It also allows units to be cleaned, stored, and re-used as needed. The illustration below shows the difference between normal flow filtration and crossflow filtration.

System flows

As the feed is pumped through the cartridge, the retentate (the material excluded by the membrane pores) continues through the recirculation loop. The permeate, including solvent and solutes, is transported through the membrane pores and is collected separately. The illustration below shows the principle of crossflow filtration.

Filtration effects

Term	Definition
Q _F , Q _R , Q _P	Feed, retentate, and permeate flow, respectively (mL/min)
P _F , P _R , P _P	Feed, retentate, and permeate pressure, respectively (bar or psi)

The filtration effect in crossflow filtration is a result of the applied "transmembrane pressure" (TMP).

$$TMP = \frac{P_{F} + P_{R}}{2} - P_{P}$$

The deltaP (Δ P) is the pressure drop between the feed (inlet) and the retentate (outlet) of the cartridge: Δ P = P_F - P_R

The crossflow is proportional to the ΔP , if the permeate flow is zero.

2 ÄKTAcrossflow applications and crossflow processes

2.2 ÄKTAcrossflow applications

2.2 ÄKTAcrossflow applications

About this section

This section describes the processes of Ultrafiltration and Microfiltration.

In this section

Sectio	See page	
2.2.1	Ultrafiltration	13
2.2.2	Microfiltration	15

2.2.1 Ultrafiltration

Ultrafiltration (UF) is a pressure-driven, convective process that uses semipermeable membranes to separate species by molecular size or shape. Removing solvent from the solution results in solute concentration or enrichment. In ultrafiltration, species that are smaller than the membrane pores pass through the membrane while species that are larger are retained. UF membranes may also be used for diafiltration (buffer exchange) to remove salts or other microspecies from a solution via continuous dilution and re-concentration. The typical membrane cutoffs used in UF are 1 to 1000 to kD.

Concentration

A concentration step uses ultrafiltration membranes to reduce the volume of sample in the reservoir. The target product, such as protein, is retained at the retentate side of the membrane.

If the sample volume is larger than the reservoir volume, the reservoir can be continuously fed with sample solution ("fed batch" concentration).

	Ultrafiltration
Retentate	Proteins
Permeate	Small peptides and salts
Cutoff	1 to 1000 to kD

Diafiltration

A diafiltration step uses ultrafiltration membranes to remove salts or other microsolutes from a solution. Small molecules are separated from a solution while larger molecules are retained in the retentate. Diafiltration is often also called buffer exchange, whereby the feed solution is continuously, or repeatedly, filled up with a buffer. One buffer is removed and replaced with an alternative buffer.

A diafiltration or buffer exchange is typically run after a UF concentrating step using the same filter as for the concentration step. The product is retained at the retentate side, in the reservoir. Typical membrane cutoffs used for a diafiltration are 1 to 1000 to kD.

- 2 ÄKTAcrossflow applications and crossflow processes2.2 ÄKTAcrossflow applications
- 2.2.1 Ultrafiltration

Ultrafiltration			
Retentate	Proteins (in new buffer)		
Permeate	Small peptides and salts (old buf- fer)		
Cut-off	1 to 1000 to kD		

2.2.2 Microfiltration

Microfiltration is a pressure driven convective process, intended to separate larger insoluble particles (submicron size species) resulting in solution concentration or clarification.

Microfiltration is usually an upstream recovery process where cells and cell debris are separated from the other components in the solution, such as recombinant proteins. The product can be the cells in the retentate or the clarified protein solution in the permeate.

	Microfiltration
Retentate	Intact cells, cell debris
Permeate	Colloidal material, viruses, proteins, and salts
Cut-off	0.1 µm to 10 µm

Typical cut-offs are 0.1 μ m to 10 μ m.

Cell harvesting

Cell harvesting is the process of concentrating or dewatering the cell mass after fermentation. With cell harvesting, the cells are the target material and are recovered as product in the retentate.

The concentration factor that can be achieved is based on the starting concentration which can, in the case of yeast cells, be as high as 70% to 80% by cell weight. Typical concetration factors are as follows:

- E. coli cells: 5× concentration
- Yeast cells: 2× concentration
- Mammalian cells: 10× to 20× concentration

Cell washing

The cells can also be prepared by diafiltration or washing, for example, for transfer into a specific buffer for further processing, such as freezing or lysing. A cell washing step can be performed together with cell harvesting.

The washing process is commonly a constant volume diafiltration process, in which buffer is added to the cell suspension at the same rate as the permeate flow. After washing, the ideal end product would consist of the concentrated cells suspended in the buffer used to wash the cells. However, in practice the harvested cells and buffer can contain varying levels of unwanted elements such as precipitated proteins, enzymes, and cell debris.

- 2 ÄKTAcrossflow applications and crossflow processes
- 2.2 ÄKTAcrossflow applications
- 2.2.2 Microfiltration

Lysate clarification

In a clarification step, cells, cell debris, or other insoluble matter are retained by the membrane and the target product passes through the membrane into the permeate. Clarification is often performed on lysed cells (lysate) to separate the cell debris from the target product (usually recombinant proteins). Together with lysate clarification, a diafiltration step can be performed to maximize target product recovery from the lysate.

Membrane and cartridge selection

In cell harvesting, microfiltration membranes will easily retain all cells. The key to membrane selection is not based on retention, but on process optimization. For example, smaller pore size membranes often provide the highest permeate flux once the system is in a steady state. For more information on cartridge and tubing specifications, see *Section B Tubing specifications, on page 334*.

2.3 The ÄKTAcrossflow system

About this section

This section describes the ÄKTAcrossflow system including the flow path, the sensors and valves along the flow path, and the different control modes.

In this section

Section		See page
2.3.1	Description of system operation	18
2.3.2	Control modes	19
2.3.3	Sensors and valves	23

2 ÄKTAcrossflow applications and crossflow processes

2.3 The ÄKTAcrossflow system

2.3.1 Description of system operation

2.3.1 Description of system operation

In the ÄKTAcrossflow system, the sample solution is loaded into the reservoir with the transfer pump. The feed pump transports the solution to the filter unit. The flow through the membrane is regulated by adjusting the transmembrane pressure via the retentate pressure control valve (**R-PCV**). The remaining retentate flow, flowing parallel to the membrane surface, is recirculated back to the reservoir. During a concentration step, the volume in the reservoir is allowed to decrease. If the entire feed volume does not fit into the reservoir at the start of the concentration step, the transfer pump continually transports extra feed material to the reservoir. This maintains a constant retentate volume. During a diafiltration step, the transfer pump transports the new buffer to the reservoir continually to maintain a constant retentate volume.

Flow path overview

2.3.2 Control modes

Terminology

Term	Definition
Q _F , Q _R , Q _P	Feed, retentate, and permeate flow , respectively (mL/min)
P _F , P _R , P _P	Feed, retentate, and permeate pressure , respectively (bar)
ТМР	Transmembrane pressure (bar or psi) $TMP = \frac{P_{F} + P_{R}}{2} - P_{P}$
DeltaP	Pressure drop (bar): $\Delta P = P_F - P_R$
Flux (LMH)	Permeate flow per membrane area:[I/h*m ² or LMH]Q _P = Permeate flow (I/h)A = Membrane area (m ²)Flux =
Shear rate (sec ⁻¹)	Q_F = Feed flow (mL/min)n = Number of fibersr = Fiber radius (mm)Shear = 169.76527 × $Q_F/n × r^3$

There are four filtration control modes on the ÄKTAcrossflow system:

- TMP control mode
- Flux control mode
- Permeate unrestricted flow
- Normal flow filtration

TMP Control mode

Control Mode:TMP Control	Control Element:		
	Feed Pump	Permeate Pump	R-PCV
TMP control with constant feed flowrate	Q _F > 0	Offset	TMP
TMP control with constant retentate flowrate	Q _R > 0	Offset	TMP
TMP control with constant DeltaP	$P_{F} - P_{R} > 0$	Offset	TMP

- 2 ÄKTAcrossflow applications and crossflow processes
- 2.3 The ÄKTAcrossflow system
- 2.3.2 Control modes

TMP control is usually used in ultrafiltration where the system must force the small components in the feed through the relatively small pores of the membrane. The control mode keeps one of the following options constant:

- constant feed flow
- constant retentate flow
- constant shear rate (hollow fibers only)
- constant deltaP

The TMP is mainly controlled by the retentate pressure control valve (**R-PCV**). The TMP control mode adjusts the retentate control valve and permeate pump to maintain the chosen TMP. Before the activation of TMP control, deltaP must be stable.

During TMP control, the permeate pump acts as a flow meter, with a pressure offset of 0.2 bar created by the permeate pressure control valve (**P-PCV**). This offset pressure is used to avoid low or negative pressure on the permeate side, which may affect the permeate pump's function as a flow meter.

If TMP < Δ P/2, the permeate pump offset will automatically be changed. The TMP control mode resets the other filtration control modes.

Note: The TMP must be optimized for different applications (filter and sample).

Control Mode:flux	Control Element:			
Control	Feed Pump	Permeate Pump	R-PCV	
Flux control with con- stant feed flowrate	Q _F > 0	Flux > 0	Offset, unrestric- ted for P _P > offset	
Flux control with con- stant retentate flowrate	Q _R > 0	Flux > 0	Offset, unrestric- ted for P _P > offset	
Flux control with con- stant shear rate (hollow fibers only)	shear rate > 0	Flux > 0	Offset, unrestric- ted for P _P > offset	
Flux control with con- stant deltaP	$P_F - P_R > 0$	Flux > 0	Offset, unrestric- ted for P _P > offset	

Flux control mode

Flux control is usually used in microfiltration processes where the system restricts the permeate flow through the relatively large pores of the membrane to prevent rapid blinding of the membrane. The control mode keeps one of the following options constant:

- constant feed flow,
- constant retentate flow,
- constant shear rate (hollow fibers only),
- constant deltaP

In this mode, the TMP value is a function of the permeate flux.

If the permeate pressure is < 0.2 bar, the **R-PCV** closes to increase the retentate pressure. When the permeate pressure is above 0.2 bar, the permeate pump can start. A constant ramping during 60 sec. from flux 0 to the flux set point is performed. During the ramping, the function for the **R-PCV** is to maintain the permeate pressure above 0.2 bar.

Note: If the permeate pressure drops below 0.2 bar during the process, the **R-PCV** valve will close to increase the permeate flow rate. A TMP limit alarm can be set. If the system reaches the TMP limit when active, the system will pause.

Flux control resets the other filtration control modes.

Note: The flux control rate must be optimized for difference applications (filter and sample).

Control Mode:permeate unre-	Control Element:			
stricted flow	Feed Pump	Permeate Pump	R-PCV	
With constant feed flowrate	Q _F > 0	$P_R = P_P (\ge = offset)$	P _R	
With constant retentate flowrate	Q _R > 0	$P_R = P_P (\ge = offset)$	P _R	
With constant shear rate (hollow fibers only)	shear rate > 0	$P_R = P_P (\ge = offset)$	P _R	
With constant deltaP	$P_{F} - P_{R} > 0$	$P_R = P_P (\ge = offset)$	P _R	

Permeate unrestricted flow

Permeate Unrestricted Flow (PUF) is a filtration control mode designed to mimic a manual system, in which the P_R and $P_P = 0$. PUF starts the flow on the permeate pump at the offset permeate pressure (0.2 bar default). If the retentate pressure > offset, the retentate pressure value is used as a new offset. If retentate pressures < offset, the retentate control valve lifts the retentate pressure to the offset value.

PUF is typically used only for nonproduct steps, for example, in the Method Wizard created preproduct method (see *Chapter 6 Create preproduct steps using the Method Wizard, on page 92*)

Permeate unrestricted flow resets the other filtration control modes.

2 ÄKTAcrossflow applications and crossflow processes

2.3 The ÄKTAcrossflow system

2.3.2 Control modes

Normal flow filtration

In normal flow filtration mode, the flow and pressure over the filter are controlled by the feed pump only. In the permeate line, the permeate pressure control valve (**P-PCV**) is fully opened. Because of this, liquid can move through the permeate pump even though the check valves of the permeate pump are not active. To allow for a homogeneous flushing of the permeate pump heads during normal flow filtration, the permeate pump is running idle at a low flow rate (20% of the feed flow rate) while liquid is transferred by the feed pump.

The pressure over the normal flow filter (pNFF) is the difference between the feed pressure and the permeate pressure.

Control Mode:normal	Control Element:			
flow flitration	Feed Pump	Permeate Pump	R-PCV	
NFF control with constant feed flow	100%	20% of feed flow	R-PCV: closed P-PCV: open	
NFF control with constant feed pressure	Pump ramps up to desired feed pressure set point (pNFF)	20% of feed flow	R-PCV: closed P-PCV: open	

pNFF = feed pressure - permeate pressure

The normal flow filtration control mode is used to test the clean water flux or normalized water filtration (NWF) for hollow fibers with a pore size cut off of 0.1 μm and larger.

2 ÄKTAcrossflow applications and crossflow processes
 2.3 The ÄKTAcrossflow system
 2.3.3 Sensors and valves

2.3.3 Sensors and valves

The system contains several valves and sensors. There are sensors for:

- pressure
- conductivity
- UV absorbance
- pH
- temperature
- reservoir level
- air

The output from the sensors are monitored by the UNICORN control software during the process run.

The sensors and valves are described in Chapter 15 System components, on page 317

Detailed illustration of the system flow path

2 ÄKTAcrossflow applications and crossflow processes 24 Filters

2.4 Filters

The ÄKTAcrossflow system supports the two most common crossflow filter designs, hollow fibers and flat sheet cassettes, with surface areas suitable for flow rates up to 600 mL/min.

Hollow fibre filters

GE manufactures a complete selection of crossflow ultrafiltration and microfiltration hollow fiber membranes. In addition, the Start AXM and AXH hollow fiber cartridges, with a surface area of 40 or 50 cm², are especially designed for the ÄKTAcrossflow instrument. These cartridges are configured for convenient linear scaling and to optimize any candidate application around reproducible and predictable fluid mechanics.

In the hollow fiber cartridge, the tube-like structure is made from a membrane and sealed inside a crossflow cartridge. When in use, the feed stream flows into the inner diameter of one end of the hollow fiber and the retentate flows out the other end. The permeate passes through the membrane (the walls of the hollow fiber) and is routed out of ports at the side of the cartridge.

Figure 2.1: Schematic of a hollow fiber filter

Hollow fibre filters with UNF fittings recommended for use with ÄKTAcrossflow are shown in the following table.

For assembling instructions and ordering information, see the ÄKTAcrossflow Operating Instructions.

Flat sheet cassettes

In addition to hollow fiber cartridges, the ÄKTAcrossflow system has been designed to work with flat sheet crossflow filter cassettes from a variety of manufacturers, with surface areas up to approximately 1000 cm².

2.5 Associated documentation

For a list of all associated system-specific and software documentation, refer to the ÄKTAcrossflow Operating Instructions.

3 System Preparation

About this chapter

This chapter contains information for preparing the ÄKTAcrossflow system and connecting it to UNICORN, as well as how to calibrate component parts.

In this chapter

Section		See page
3.1	Start the instrument	27
3.2	Start UNICORN and connect to the instrument	28
3.3	Assembling filters	33
3.4	The pump rinsing system	37
3.5	Selecting type of Retentate valve block	43
3.6	Calibrate the level sensor	46
3.7	Calibrate the transfer pressure sensor	52
3.8	Calibrate the pH electrode	53
3.9	Calibrate the conductivity cell	55

3.1 Start the instrument

To start the ÄKTAcrossflow system:

- Step Action
- 1 Switch on the instrument at the mains power switch located on the rear panel.

Note:

The **Power indicator** on the front panel flashes slowly until the internal communication with the CU (Control Unit) is established.

2

Switch on the power to the PC and the monitor.

3.2 Start UNICORN and connect to the instrument

Follow the instructions to start UNICORN and log on to the program. A valid e-license must be available for the workstation. See UNICORN Administration and Technical Manual for more information about e-licenses.

Step Action

1

Double-click the UNICORN icon on the desktop.

Result:

The *Log On* dialog box opens.

Note:

If there is no connection to the database, it is still possible to log on to UNICORN and control a running system. The **Log On** dialog box will give the option to start **System Control** without a database. Click **Start System Control** to proceed to the next **Log On** dialog box.

Step	Action				
2	In the Log O	n dialog box:			
	a. Login as o	a. Login as default user with password default .			
	🔲 Use Wind	lows Authentication			
	User Name:	Default		•	
	Domain:			-	
	Access Group:	Administrators		•	
	Start:	Administration Method Editor	✓ System✓ Evaluation	n Control ation	
		ОК	Cancel	Options <<	

Either

• Click a user name in the **User Name** list and enter the password in the **Password** field.

Note:

It is also possible to select the **Use Windows Authentication** check box and enter a network ID in the **User Name** box.

or

3 System Preparation

3.2 Start UNICORN and connect to the instrument

Step	Action		
	Use Windows Authentication		
	User Name:	Default 🗸	
	Password:		
	Domain:	· · · · · · · · · · · · · · · · · · ·	
	Access Group:	Administrators	
	Start:	Image: Administration Image: System Control Image: Administration Image: System Control Image: Administration Image: System Control Image: Administration Image: System Control	
	()	OK Cancel Options <<	
3	Select which UNICORN modules to start.		
4	Click OK .		
	Result:		
	The UNICOR	N modules open.	

Follow the instructions to connect the instrument to UNICORN.

3.2 Start UNICORN and connect to the instrument

Step	Action
2	In the Connect to systems dialog box:
	• Select the checkbox in front of the system name.
	• To control the selected system, click <i>Control</i> .
	Note:
	Instruments that are turned off or disconnected from the network appear dimmed and cannot be connected.
	Connected systems (1 selected, max 3)
	System name Control View
	AKTAcrossflow
	Tip:
	To view the users currently connected to systems, either in control or view
	mode, click the Connected Users button.
3	When the communication between UNICORN and the instrument unit is established:
	• There is a constant light on the Power indicator on the instrument unit.
	• The <i>Connection</i> box shows <i>Yes</i> .
	• The System state box shows Ready .
	O Aktacrossflow
	Kun Uata Kun Uata Connection System state Acc. volume cv Block volume cv Acc. time Block time Yes Ready 0 ml 0 ml 0.00 min 0.00 min 0.00 min

3.3 Assembling filters

Prepare the filter for use

• UltrafiltrationUF filter units are shipped with an appropriate storage solution within the pore structure to prevent drying of the membrane (see filter manufacturer for details). GE hollow fiber ultrafilter cartridges are shipped in an isopropanol/glycerol solution. This mixture enhances wetting but may cause the fibers to appear wavy. Trace amounts of isopropanol may remain when the cartridges are shipped.

The glycerol must be thoroughly rinsed from the cartridge prior to use. In addition to preventing drying, the glycerol minimizes entrained air within the pore structure of the membrane wall which may become "locked-in", reducing permeability until the air has been displaced by liquid.

• MicrofiltrationAlthough MF membrane cartridges are shipped dry, without preservative solutions (such as GE hollow fiber microfilter cartridges), it is recommended to rinse cartridges before first process exposure or heat sterilization.

For instructions on cleaning a hollow fiber filter cartridge and system prior to a filtration run, refer to *Chapter 6 Create preproduct steps using the Method Wizard, on page 92.*

Connect the Start AXM hollow fibre cartridge

The Start AXM hollow fiber cartridge can be installed by connecting it to the hollow fiber cartridge holder.

The holder is spring-loaded, and can be rotated 360° without loosening any screws. It has fixed positions separated by 90°, (i.e., vertical or horizontal position). The holder allows cartridge diameters from 3 to 23 mm.

Install the filter on the instrument unit as follows:

- Step Action
- 1 Attach the block to the holder.

2 Carefully attach the cartridge in the holder by tightening the locking screw.

Connect tubing to the hollow fibre cartridge

Connect the cartridge to the retentate, permeate and feed lines.

Note: To minimize holdup and working volume, the recommended tubing length and diameter for use with the Start AXM hollow fiber cartridge, refer to Appendix A.

Connect the Start AXH cartridge

The Start AXH cartridge can be installed by connecting it to the retentate, permeate and feed lines, as shown in the illustration below. There is no need for a holder.

For details of recommended tubing, refer to Appendix A.

Connect a flat sheet cassette

For guidance on connecting a flat sheet cassette and holder, contact your local GE representative.
3.4 The pump rinsing system

Introduction

Leakage between the pump chamber and the pump drive mechanism is prevented by a seal that is continuously lubricated by the presence of eluent. To prevent any deposition of salts from aqueous buffers on the pump pistons and to prolong the life of the seals, the low pressure chamber behind the piston is flushed continuously with a low flow of 20% ethanol prepared in ultra pure water or equivalent.

The piston rinsing system tubing is connected to the rearmost ports on the pump heads. The following illustration shows the tubing configuration of the piston rinsing system.

Feed pump P-984

Transfer & Permeate pump P-982

Although the seal prevents leakage between the pump chamber and the drive mechanism, "active transport" or movement of a very small amount of liquid between the product to the rinse side is possible. To eliminate the risk of re-introducing proteins/ cells into subsequent batch runs, replace the rinse solution with fresh solution either every day or between crossflow runs. When running the **System Sanitization** program, the rinsing solution should be exchanged with 1M NaOH, followed by careful rinsing with water and replacement of the solution with 20% ethanol.

The illustration below indicates the different components of the pump rinsing system.

Using the pump rinsing system

To use the piston rinsing system:

Step	Action
1	Fill the rinsing system bottles with 20% ethanol.
2	Insert the rinsing inlet and outlet tubing ends into the rinsing solution.
	Note:
	To eliminate the risk of re-introducing bacteria or other contaminants, use the optional path with a separate waste bottle.
3	Fill the tubing with solution using a syringe that is connected to the outlet tubing end.
4	Repeat steps 1 to 3 for all pumps.

Cleaning the pump piston rinsing system

To clean the pump piston rinsing system use the following procedure

Step	Action
1	Remove the rinsing solution bottles and empty them. Place the tubing in waste containers.
2	Fill the bottles with freshly prepared rinsing solution (20% ethanol) and in- sert the rinsing system tubing.

Step	Action
3	Connect the 3-way connector is connected to the feed , retentate , and permeate lines in place of a filter.
4	In System Control, select Manual/Execute Manual Instructions.
5	Under Permeate/Total_Membrane_Surface_Area , set the membrane

Place **transfer inlet 1** tubing into a 500 mL bottle of distilled water. Under *Manual*, select this port under *Transfer/Transfer_Valve_Block*, and click *Execute*.

H Recirc	Macro Macro		Insert Delete
Transfer/Tourier/Tour	Tv®4n1		Vander,Veler,Bock 14961
ave result as:		Browse	

7

6

Start the **transfer pump** at a flow rate of 200 mL/min to bring distilled water into the reservoir. At the same time that the transfer flow starts, start a *FeedFlow* of 400 mL/min

Step Action

9

8 Stop the transfer pump after 1 minute when approximately 200 mL is in the reservoir.

structions:				Instruction exec	ution list		
 Recirc 	Parameters for TransferFlow FlowRate	10.0 - 200.01		Inset	Delete		
Permeate Transfer		0.0 milimin		Transford loss 0.0			
Constant, Retentate_Volume Treosfer, Volve, Biocks Treosfer, Purge, Volve Set, TifVol, Totaloer DF_Exchange_Factor ConstRVol, P * AlarmsMon * Other							
eve result as:			Browse				
Auto undate of namenatars d	Luina nun					Econom	Cine

Open permeate valve block out 2.

Breakpoint	Instructions:	Remarker for Remarks Maker Plank
0.00 ‡ min Var	III Recite ■ Permedie Permedie Permedie Permedie, Valve, Block Permedie, Urreintode, Row NFF_ConstartRow NFF_ConstartRow Stop, Eval, Window Stop, Eval, Window Stop, Eval, Window Stop, Eval, Window Ste, Eval, Mark Ste, Permedia, Valueta, V	Mandes for Ferneate, Vave_Block Macro (Var) P-VB-Out2
Insert Char	ge Replace Delete	

10 Under *Permeate/Flux_Control*, set a flux rate of 800 LMH and pump for two minutes.

point	insideations.	-	Parameters for F	ux Control			
0.00 ‡ min	TMP_Control	^	Flux	-	[0.0 - 4800.0	1	
/ar	Flux_Control		Var	800	Ç 1 MH		
	Permeate_Valve_Block		TMPir	nit	[0 01 - 5 20]		
	Permeate_Unrestricted_Flow		[Var		A hor	17 OFF	
	NFF_ConstantFlow		vd		- udi		
	NFF_ConstantPressure						
	Start_Eval_window	E					
	Set Eval Mark						
	Set PermVol Totalizer						
	%Flux Drop Calculation						
	Total_Membrane_Surface_Area						
	Lumen_Diameter						
	Total_Number_Of_Fibres						
	IMP_PID_RetentateControlValve						
	IMP_PID_PermeatePump						
	PLIE PL RetentateControlValve						
	PLIE PL PermestePump	-					
	r or r r cameater drib						
ert Chan	ge Replace Delete						

Step Action 11 Under Recirc/EmptyReservoir, select R-VB-Out1 as RetValveOutlet, set MaxFeedPressure to 3.0 bar, and click Execute.

Becirc		RetValveOutlet			inset	Delete		
Retflow		R-VB-Out1		•	Emphyllepenkor feVB Out		1 3 00 600 0	
FeedPressure	-	MaxFeedPress	(0.00 - 5.20)					
Shear		3.00 ther						
Retentate_Valve_Block		MaxFeedFlow	[0.0 - 600.0]					
Emptymeservor EmptyReservorAbot			600.0 C milmin					
Concentration_Factor								
MorenSpeed Set Bankid Tetaliner								
H A I	-							
we result as:				Drowse				

12 The system will stop when the reservoir is empty.

3.5 Selecting type of Retentate valve block

The **Retentate valve** block type, old type or new type, must be selected in UNICORN. If you are unsure which type of retentate valve block your system has, contact your local GE office for support.

To select the **Retentate valve** block type, use the following procedure.

Step	Action
1	In UNICORN Administration, select System Properties.
	🛷 Administration
	File Reports Tools Help
	UNICORN User Setup
	Access Groups and Network Users
	E-mail Setup
	UNICORN and System Log
	System Properties
	Database Management

3 System Preparation

3.5 Selecting type of Retentate valve block

Step Action

2 Select a system and click *Edit*.

3

Under *Component* types, select type of retentate valve block used from the following options. either *old type* or *new type*.

Inst <u>r</u> ument configuration UNICORN <u>C</u> ontrol PC	crossflow_111_W105 (1 HCA-DH6CT12	•	Information	Import
Instrument serial no.:	1234567890			
Connect by:	Control Unit number:	1 •		
Component types:	Control Unit IP address:	3.204.33.64	Test Connection	
Aktacrossflow Fraction Coll Auxiliary Equ Old Type V New Typ	ector ipment alve Block e e			
Advanced Setting	s Extensions		ОК	Cancel

Step	Action
4	Click OK to close the Edit System dialog.
5	Click Close to close the System Properties dialog.

3.6 Calibrate the level sensor

About this section

This section provides instructions on how to calibrate the level sensor using either the **Method Wizard** or by manually running the calibration program.

In this section

Section	on	See page
3.6.1	Calibrate the level sensor using the Method Wizard	47
3.6.2	Manual calibration of the level sensor	50

3.6.1 Calibrate the level sensor using the Method Wizard

The **Method Wizard** enables the creation of a method to automatically calibrate the level sensor, which sets the zero level on the reservoir. The calibration should be performed as needed, or when the level sensor is changed.

Step	Action
1	In the Method Editor click the Create New Method icon.
2	In the System drop down menu, select ÄKTAcrossflow. System: Aktacrossflow Create a new method by using the: Image: Method Wizard: Empty Method: Method Description Step-by-step selection of options to generate a new method.
3	OK Cancel Select Method Wizard. Cancel

4 Click **OK**.

3 System Preparation

3.6 Calibrate the level sensor

3.6.1 Calibrate the level sensor using the **Method Wizard**

Step	Action					
5	In the Basic Settings dialog, select Calibrate level sensor under the Method drop down menu.					
	Basic Settings					
	Basic Settings Summary	Filter Type Method The 'calibrat level sensor	Hollow Fibre Flat Sheet Calibrate level sensor Concentration Diafiliration Installation Test System Sanitization to increase the accuracy when emptying the reservoir.			
		Basic Settin	igs			
	Basic Settings	Filter Type	Hollow Fibre Flat Sheet			
	Summary	Method The 'calibrate	Calibrate level sensor			
		level sensor	to increase the accuracy when emptying the reservoir.			
		Function:				
		The meth	od will empty the reservoir out R-VB-Out1 and ensure there			
		is air in t is finishe	he retentate tubing prior to calibration. When the calibration ed, the method with de-air the system with water from T-VB-In5.			
		Note: The calibratic	e reservoir lid must be open during level sensor on to ensure a good result.			
	< Back	Next >	Finish Cancel Help Set Default			
6	Click Einich					

- Click **Finish** 6
- To run the method, first save the method in *Method Editor* and then, in 7 **System Control**, run the method Section 10.2 Start a run, on page 213.

3 System Preparation 3.6 Calibrate the level sensor 3.6.1 Calibrate the level sensor using the **Method Wizard**

Note: If the level sensor is out of calibration, this method may not properly calibrate the level sensor. At the end of the method, if the reservoir is not empty, it might be necessary to manually empty the reservoir and manually set the zero level on the sensor in **System Control**.

3 System Preparation3.6 Calibrate the level sensor3.6.2 Manual calibration of the level sensor

3.6.2 Manual calibration of the level sensor

The reservoir level sensor can be calibrated using the Method Wizard or manually.

Using the Method Wizard to calibrate the level sensor is recommended because it reduces the risk of error and is more convenient. To calibrate the level sensor manually, use the following instructions:

Note: When calibrating the level sensor, the liquid used must be at ambient temperature.

Empty the reservoir

To manually calibrate the level sensor, the reservoir must first be emptied. To do this, use the following procedure.

Step	Action
1	Open the reservoir lid to allow air to flow freely into the reservoir.
2	In the System control dialog, select Manual → Execute Manual Instruc- tions.

3 Under **Recirc** → **EmptyReservoir**, set **RetVavleOutlet** to **R-VB-Out1** and set **MaxFeedPressure** to 3.0 bar.

tructions:				Instruction exer	cution list	
Becing Feedflow RetRow FeedPressure	^ Fa	Ref VarvOutet R-VB-Out2 MaxFeedPress [0.00 - 5.20]		inset	Delete	
Shear Shear Retentate_Valve_Block EmptyReservoir EmptyReservoir Abort Concentration_Factor MixerSpeed Set_ReeVoi_Totalzer	*	3.00 () bar MasFeedRow (0.0600.0) 600.0 () cmilmin				
ve result as:			£07//35			

- 4 Click **Execute**
- 5 Wait until the reservoir is emptied.

Note:

The **EmptyReservoir** instruction empties the reservoir but not the small cavity in the bottom of the reservoir. This cavity must also be emptied before calibration.

- 6 Under *Recirc*→*Retentate_Valve_Block*, select *R-VB-Out1*, then press *Execute*.
- 7 Under **Recirc** → **FeedFlow**, enter 20 mL/min, then press **Execute**.

Step	Action
8	Check that the cavity in the bottom of the reservoir is completely empty. Do not stop the flow.

Run level sensor calibration

To run the level sensor calibration, use the following procedure.

Step	Action					
1	In the System Control module, select System →Calibrate . The Calibra- tion dialog appears.					
2	In the Monitor box, select ZeroLS . Click the Start calibrate button to re- set the level sensor reading to 0.					
	The reservoir level sensor is highly sensitive. Do not in- sert any objects into the cavity in the bottom end plate of the reservoir since this can damage the level sensor.					
3	Under Manual → Execute Manual Instructions, select Recirc → FeedFlow.					
4	Enter 0 mL/min in the FeedFlow box to stop the feed flow, then click Exe- cute .					
5	Under Recirc →Retentate_Vavle_Block , select R-VB-recycle and click Ex- ecute.					
6	Click Close .					
7	Manually fill the reservoir with 50 mL of distilled water.					
8	Empty the reservoir by selecting Recirc \rightarrow EmptyReservoir \rightarrow R-VB-Out1 , and enter 3 in the MaxFeedPress box and 600 in the MaxFeedFlow box.					
9	Click Execute .					
10	Click Close .					

3.7 Calibrate the transfer pressure sensor

In pressure sensor P_T , the zero pressure-reading can be calibrated. The amplification in sensors P_T , P_F , P_R , and P_P is already calibrated at the factory.

Calibration of the pressure sensor

 $\mathbf{P}_{\mathbf{T}}$

To calibrate the zero pressure-reading on the transfer pump, use the following instructions:

Step	Action
1	In the System Control module, under Manual →Execute_Manual_In- structions, select Transfer →Transfer_Purge_Valve and set to Waste . Click Execute .
2	Under Transfer →Transfer_Valve_Block 1 , select T-VB-In1 . Click Exe- cute.
3	Immerse the tubing from inlet T-VB-In1 in distilled water.
4	In the System Control module, select System → Calibrate . <i>Result: the</i> Cal- <i>ibration</i> dialog appears.
	Result:
	In the System Control module, select System →Calibrate . dialog ap- pears.
5	In the Monitor box, select TrfPress .
6	Click the Start calibrate button when the pressure is stable. The transfer pressure has now been set to 0.
7	Press Close to finish calibration.

3.8 Calibrate the pH electrode

A good laboratory routine is to calibrate the pH electrode at least once a day, when the electrode is replaced, or if the ambient temperature is changed. The pH electrode is calibrated using standard buffer solutions in a two point calibration. The two buffer solutions may have any pH value as long as the difference between them is at least 1 pH unit, and the expected pH during the run is within this interval.

Note: The pH-calibration kit can be found in the Accessory box delivered with the ÄKTAcrossflow.

To calibrate the pH electrode, use the following procedure.

Step	Action			
1	In the System Control module, select System → Calibrate .			
2	Select pH from the Monitor dropdown menu in the Calibration window.			
3	Prepare two reference buffer solutions, the first normally pH 7.0. The dif- ference in pH value between them must be at least 1 pH unit. The expected pH value during the run should be within this interval.			
4	Use the holder on the front panel for the reference buffer solution contain-			

4 Use the holder on the front panel for the reference buffer solution containers.

5 Remove the pH electrode from the cell holder and immerse the electrode in the first reference solution.

Note:

To avoid leakage from the system after removing the pH electrode, replace it with the pH electrode dummy.

6 Enter the known pH value of the solution in the **Set the reference value** field.

Step	Action
7	The pH reading is shown under Current value . When the pH value has stabilized, click Read value 1 .
8	Rinse the electrode tip with distilled water and then immerse the elec- trode in the second reference solution (e.g., pH 4.0 or 9.0).
9	Enter the known pH value of the second reference solution in the second Set the reference value field.
10	When the pH value has stabilized, click Read value 2 . The calibration is fin- ished.
11	After the calibration, values are automatically entered into the Calibrated electrode slope; % and Asymmetry potential at pH7; mV fields.

A new electrode has a slope of typically 95% - 102% and an asymmetry potential within \pm 30 mV. As the electrode ages, the slope decreases and the asymmetry potential increases.

As a rule, when the **Asymmetry potential at pH7; mV** value is outside of ±60 mV and the **Calibrated electrode slope;** % value is lower than 80%, and no improvement can be achieved by cleaning, the electrode should be replaced.

An electrode is still usable at lower slopes and higher asymmetry potentials but the response will be slower and the accuracy diminished.

Before use, rinse the pH electrode using distilled water.

3.9 Calibrate the conductivity cell

Enter a new cell constant

After replacing the conductivity cell, the cell constant has to be set. The cell constant is shown on the packaging of the new cell.

Step	Action
1	In the System Control module, select System →Calibrate and then Cond_Cell in the Monitor dropdown menu.
2	Enter the cell constant in the Set the reference value field.
3	Click Read value 1 . The new cell constant is updated. Click Close .

Calibrate the temperature sensor

Calibration of the temperature sensor in the conductivity cell is only necessary when the cell is used in high accuracy measurements or if the cell is replaced.

Step	Action
1	Make sure that the conductivity cell together with a precision thermome- ter are not exposed to a draft. Leave them for 15 minutes to let the temper- ature stabilize.
2	In the System Control module, select System →Calibrate and choose Cond_Temp in the Monitor dropdown menu.
3	Read the temperature on the thermometer.
4	Enter the temperature in the Set the reference value field.
5	Click the Read value 1 button.

Set up conductivity temperature compensation

The conductivity of a buffer is temperature dependent. To relate conductivity to concentration and/or compare conductivity values, temperature compensation should be used. The compensation consists of a compensation factor together with a reference temperature. All conductivity values will then automatically be converted to the set reference temperature.

Step	Action
1	In the System Control module, select System → Settings and click the Monitors button.
2	Choose the instruction CondTempComp .
3	The factor is expressed in percentage increase of conductivity per °C in- crease in temperature. If the temperature compensation factor is un- known, a general approximate value of 2% can be set for many common salt buffers. If no temperature compensation is needed, enter the value 0% in the CompFactor field.
4	Choose the instruction CondRefTemp .
5	Select the reference temperature to which the measured conductivity values will be converted (normally 20 or 25 °C).
6	Enter an appropriate temperature in the RefTemp field.
7	Click OK .

Calibrate the cell constant

Normally it is not necessary to adjust the cell constant as the cell is precalibrated on delivery. Adjustment is only necessary when replacing the conductivity cell with a cell whose cell constant is unknown.

Note: The conductivity temperature compensation must not be used when adjusting the cell constant. Set the compensation factor to 0 (see section Set up conductivity temperature compensation, on page 56). The temperature sensor must be calibrated before adjusting the cell constant (see section Calibrate the temperature sensor, on page 55).

Step	Action
1	Prepare a calibration solution of 1.00 M NaCl, 58.44 g/L. Let the solution reach room temperature.

Step	Action
2	Fill the cell completely with the calibration solution by pumping at least 15 mL through the cell with a syringe.
3	When finished, wait for 15 minutes until the temperature is constant in the range of 20°C to 30 °C.
4	In the System Control module, select System/Calibrate . Select Cond_Cal in the Monitor dropdown menu.
5	Read the conductivity value displayed under Current value and compare it with the theoretical value from the graph opposite at the temperature of the calibration solution.
	If the displayed value and the theoretical value correspond, no further ac- tion is required.
	If the values differ, proceed with steps 6, 7 and 8.

- 7 Enter the theoretical conductivity value according to the graph in the **Set the reference value** field.
- 8 Click the **Read value 1** button. The new cell constant is automatically calculated and updated.

6

4 Handling methods in the ÄKTAcrossflow

About this chapter

This chapter describes how to create ÄKTAcrossflow methods in UNICORN.

In this chapter

Section		See page
4.1	A UNICORN method	59
4.2	Creating a new method	61

4.1 A UNICORN method

Phases and blocks

The **Text pane** in the **Method Editor** of UNICORN displays the method as a list of text instructions. The instructions are usually organized into phases, denoted by blue square symbols, for a specific functional use, for example to load a sample or to perform a concentration step. A phase can contain individual instructions or substructure in the form of blocks. The phases and blocks can be expanded to show the instructions within the block.

A method always starts with the *Methods Settings* phase.

(Main)	
0.00 Base: Time	
🗄 🗧 0.00 Phase: Method	Settings
🗄 🗧 0.00 Phase: Initial S	Setup
🗄 🗧 0.00 Phase: Fill Sar	nple
0.00 Phase: Concer	ntration
0.00 Base: Same	eAsMain
0.00 Set mark: 0	Concentration
🖃 📃 0.00 Block: Flow	path Perm Conc
0.00 Base: S	ameAsMain
···· 0.00 Permea	e_Valve_Block: P-VB-Out2
	Delay Op05 min
0.00 End_Blo	ock
💀 🗧 0.00 Block: Fee	d Flow
😥 🗖 0.00 Block: TMF	>
🗉 🗖 0.00 Block: Cha	se inlet to reservoir
🐵 📃 0.00 Block: Con	centration
💀 📃 0.00 Block: Res	tore after concentration
0.00 End_Block	
🗄 🗌 0.00 Phase: Recov	ery

To create a method, either

- use the **Method Wizard creator**, see Section 4.2.1 Create crossflow methods using the Method Wizard, on page 62 (recommended) or
- Use the **User Defined** phase in the **Predefined Phase library** to create new phases, see Unicorn User Manual for more information.
 - **Note:** User Defined is an empty phase designed for text editing methods. Such phases may be saved in the personal or global phase library for reuse in other methods.

Base

Every phase and block must start with a **Base** instruction, which defines the parameter for calculating breakpoints. Different phases and blocks can use different bases. In the ÄKTAcrossflow, the base can be one of the following:

- Volume (mL)
- Time (minutes)
- **SameAsMain** (all blocks apart from the main block), which means that the block will use the base defined in the main block.
- **Note:** Do not use **Column Volume (CV)** as base in ÄKTAcrossflow methods as it is not relevant and will lead to incorrect methods.

Calls

To execute the instructions contained within a phase or block in a method, the phase or block must be called by the program. When a phase or block is called, the instructions in the phase or block are executed in the order written until the phase or block ends, or the **End_Block** instruction is executed. There are two types of calls:

- Unconditional calls, which are made with a *Phase* or *Block* instruction.
- Conditional calls, which are made with a **Watch** instruction. **Watch** instructions allow a specified block or instruction to be called when a chosen monitor signal meets a given condition.

Watch and Hold_Until

The breakpoint when the **Watch** instruction is issued determines when the watch begins. A watch remains active until the condition is met or a new **Watch** instruction is issued for the same monitor. The watch is cancelled automatically when the condition is met. A watch can also be turned off with the **Watch_off** instruction.

The *Hold_Until* instruction is a special kind of *Watch* instruction. The method is put on hold until a specific condition is met (signal, test, or value), or the time-out is reached. Afterwards, the remaining instructions in the method are executed.

4.2 Creating a new method

About this section

This section describes how to create a new ÄKTAcrossflow method in UNICORN by using both the **Method Wizard** and the **Text Instructions** settings.

To create a new method, there are two alternatives:

- In the *Method Wizard*, customized methods for most purposes are made by setting appropriate values for the method variables.
- In the *Text Instructions* editor in the *Method Editor* module, more advanced editing facilities are available.

In this section

Section		See page
4.2.1	Create crossflow methods using the Method Wizard	62
4.2.2	Create crossflow methods using Text Instructions	73

4 Handling methods in the ÄKTAcrossflow

4.2 Creating a new method

4.2.1 Create crossflow methods using the Method Wizard

4.2.1 Create crossflow methods using the Method Wizard

ÄKTAcrossflow methods are complex and include many steps which are best separated into phases, sub-blocks, and instructions. Therefore, using the Method Wizard to build methods for different applications is recommended.

Create a new method

To create a new method using the **Method Wizard** in the **Method Editor**, use the following steps:

Step	Action
1	Click the Create a new method icon in the UNICORN Method Editor .

Step Action

2 Select the ÄKTAcrossflow system, choose *Method Wizard*, and click *OK*.

lew Method	×
System:	
AKTAcrossflow	•
Create a new method by using the:	
Method Wizard:	
C Empty Method:	
Method Description	
Step-by-step selection of options to	generate a new method.
(OK Cancel

Result:

A dialog of **Basic Settings** will be displayed.

4 Handling methods in the ÄKTAcrossflow

4.2 Creating a new method

4.2.1 Create crossflow methods using the Method Wizard

Preproduct Steps	Method	Concent	ration\Diafilt	tration 👻
Product Steps	Filter List	User-defi	ned filter	•
Recovery		Concent	ration/Diafilt	tration 👻
Postproduct Steps				
Summary	Steps	oduct 👿 Pi	roduct	Postproduct
	Flat Sheet (sp	pecification	per filter)	
	Surface A	rea	16	cm^2 (16-1200 cm^2)
	Pore Size		1	(0.05 to 1000 um or kD)
	Filter Hol	d-Up Vol	0	ml (0.0-25.0 ml)
	Feed Pres	ssure Limit	0	bar (0-5.2 bar)
	TMP Limi	t	0	bar (0-5.2 bar)
	System setup			2
	Number	of filters	1 •	
	Extra Tub	ing Volume	0.0	ml (0.0-25.0 ml)
	Reservoi	r Size		
	4	350 m	ıl	
		© 1100	ml	
Tubing kit				
		Small	ID (1.7 mm	n)
		Carge	ID (2.9 mm	n)

Step Action

3

- To obtain default values in the **Method Wizard**:
 - a. Click Set Default. This is only possible in the first dialog.
 - b. Choose between two filter types, either Hollow Fibre or Flat Sheet.
 - c. In the Method list, the type of process is selected

Basic Settings

Note:

The system defaults to a **Concentration/Diafiltration** method, but other methods are also available:

- Calibrate level sensor
- Installation Test
- System Sanitization

These methods are discussed in Section 3.6 Calibrate the level sensor, on page 46, Section 11.1 System sanitization, on page 218, and the ÄKTAcross-flow Installation Test Guide (11001235).

4 Handling methods in the ÄKTAcrossflow

4.2 Creating a new method

4.2.1 Create crossflow methods using the Method Wizard

Step Action

4

If *Filter Type* →*Hollow Fibre* has been selected, the *Filter List* will display available GE hollow fibre filters.

- a. *Concentration/Diafiltration* creates a standard ultrafiltration method.
- **b.** UF Process Optimization creates a TMP and crossflow rate scouting method. This process is discussed further in *Chapter 9 Process optimization in Ultrafiltration, on page 202.*

Basic Settings Hollow Fibre Flat Sheet Filter Type Concentration \Diafiltration Method UFP-3-C-2U • Filter List . UEP-3-C-3MA UFP-3-C-3X2MA Steps UFP-3-C-4A Preprodi UFP-3-C-4MA UFP-3-C-H24LA Hollow Fibre (sj UFP-3-C-H24U UFP-3-C-H42LA Lumen Dian UFP-3-C-MM01A m) UFP-3-C-MM06A Number of UFP-3-C-MM12A UFP-3-E-3MA Pore Size pr kD) UFP-3-E-4A Surface Are UFP-3-E-4MA ^2) UFP-3-E-H22LA Lumen Hold UFP-3-E-H42LA Ξ UFP-30-C-2U Feed Pressi UFP-30-C-3MA UFP-30-C-3X2MA TMP Limit UFP-30-C-4A UFP-30-C-4MA System setup UFP-30-C-H24LA Number of UFP-30-C-H24U UFP-30-C-H42LA Extra Tubin UFP-30-C-MM01A Reservoir S UFP-30-C-MM06A UFP-30-C-MM12A UFP-30-E-3MA UFP-30-E-4A UFP-30-E-4MA ÷

If **Filter Type** \rightarrow **Flat sheet** has been selected, the filter type **User-defined** *filter* is displayed in the **Filter List** window.

4 Handling methods in the ÄKTAcrossflow 4.2 Creating a new method 4.2.1 Create crossflow methods using the Method Wizard

Step Action

Basic Settings				
Filter Type Method	Hollow Fibre Flat Sheet Concentration \Diafiltration			
Filter List	User-defined filter			
	User-defined filter			

An additional choice of method type is available for flat sheet cassettes:

Basic Settings				
Filter Type	🗇 Hollow Fibre 🛛 💿 Flat Sheet			
Method	Concentration \Diafiltration -			
Filter List	User-defined filter 🔹			
	Concentration/Diafiltration			
	Concentration/Diafiltration UF Process Optimization			

5 Below the *Filter List*, select the type of steps (*Preproduct*, *Product*, and/or *Postproduct*) to include in the method.

Steps	
🥅 Preproduct 📝 Product	📝 Postproduct

6 If **Filter Type** → **Hollow Fibre** has been selected, the specifications are prepopulted. These can be edited by the user.

If **Filter Type** \rightarrow **Flat sheet** has been selected, the user must fill in the specification values for:

- a. Surface area
- b. Pore size
- c. Filter hold-up volume
- d. Feed pressure limit
- e. TMP limit

4 Handling methods in the ÄKTAcrossflow

4.2 Creating a new method

4.2.1 Create crossflow methods using the Method Wizard

Step	Action				
7	In the System setup section:				
	 Select the number of filters (only necessary when using several filters assembled together in parallel). 				
	b. Input any extra tubing volume used in the recirculation loop (e.g., when connecting in a separate filter holder).				
	c. Select the reservoir size (350 mL or 1100 mL) and tubing kit (large i.d. or small i.d.) used in the recirculation loop.				
	The inputs for filter hold-up volume, tubing i.d., and extra tubing volume are used by the system to calculate the recirculation hold-up volume.				
	To get help instructions for each Method Wizard dialog, click Help or press the F1 key.				
	To go back to the previous dialog, click Back .				
	To stop the Method Wizard , click Cancel .				
	To proceed with the next dialog, click Next .				

Step Action

8

In each dialog, select the appropriate parameter values and click **Next** to continue. Continue with inputs on all dialog pages.

Denie Cationa	Preproduct setup			
Basic Settings				
Preproduct Steps	Rinsing			
Product Steps	Filter CIP			
Recovery	🔽 Water Flush			
Postproduct Steps	Water Flush Volume	200		
Summary	Vater Flux Test			
	TMP	1	bar (0.01-5.2 bar)	
	O NFF			
	Buffer Conditioning			
	Buffer Rinse Volume	30	ml (30-300 ml)	
< Back	lext > Finish	Can	icel Help	Set Default

Finalize the method

After a series of dialogs (depending on the choice of preproduct, product, and postproduct), a **Summary** dialog is shown.

A list of calculated volumes of required solutions is displayed.

The sample volume includes 6 mL extra for priming, which will go to waste.

The diafiltration buffer volumes are not given; in cases where the sample load is terminated by the air sensor, it is not possible to estimate these volumes. The end user should calculate the required volumes and ensure that there is enough diafiltration buffer to meet this requirement. 4 Handling methods in the ÄKTAcrossflow

Note:

- 4.2 Creating a new method
- 4.2.1 Create crossflow methods using the Method Wizard

reproduct Steps	System: AKTA	crossflow	
roduct Steps			
rouder oropa	Transfer Inlets	:	
tep 1	Inlet number	Designation	Volume
tep 2	1	Sample	506 ml
	2	Conditioning buffer	1560 ml
ecovery	3	Diafiltration buffer 1	See note
ostproduct Steps	4	Diatiltration buffer 2	See note
ummary	5	CIP solution t	1820 ml
unnury	0	CIP solution a	1250 ml
	8	Storage Solution	o ml
	Retentate:		
	Retentate Out	Designation	
	1	Flush	
	2	Waste	
	3	Product	
	Permeate:		
	Permeate Out	Designation	
	1	Waste	
	2	Concentration step	
	3	Diafiltration step	
	Note 1: Please note that th after "Finish" is et	his info will be stored in Metho xecuted.	d notes
	L		Print

To prepare a run with correct solutions, it is recommended to print this list using the **Print** button. This list will also be displayed in **Method Notes**.

To finish and save the method, use the following steps:

Step Action

1 Click *Finish* in the *Summary* dialog to finalize the creation of the new method. UNICORN will create a complete method, with each step contained with a sub-block of a *User Defined* phase.

Step Action 2 To display the text instructions of the created method, click the Text Instructions tab. Method Editor - UNTITLED* File Edit View Phases Tools Help 12 📩 🕄 🖶 👆 🗅 🛍 🤊 (* 🖳 🚉 🗉 🚨 🗶 🧱 System: AKTAc 0 × Text Instructions (1 Phase Properties ■ (Man) = 0.00 Base: Time = 0.00 Phase: Meth 0.00 Base: Se 0.00 End Base User Method Settings User Defined 0.00 Bee:: SamoMain User Defined T se: User Defined

3 To view and expand the method, click on any plus sign.

Note:

The method can be edited in the **Text Editor** as described in Section 4.2.2 Create crossflow methods using Text Instructions, on page 73.

- 4 To save the method, select *File* →*Save*.
- 5 Select save location and enter a method name.
- 6 Select **System**.

- 4 Handling methods in the ÄKTAcrossflow
- 4.2 Creating a new method
- 4.2.1 Create crossflow methods using the Method Wizard

	Save As			X
	Folder name	s • ·	Last modified	Created by
		System	Last modified	created by
	AKTAcrossflow		03/06/2018 23:19	Default
	Default Home		27/09/2016 15:18	System
	•			•
	Name: Concentration Method			
	System: AKTAcrossflow			•
4.2.2 Create crossflow methods using Text Instructions

The **Text Instructions** editor in the **Method Editor** can be used to build methods step by step. The editor can also be used to modify instructions in methods created by the **Method Wizard**.

The first line of the empty method contains the main **Base**. The base provides a way to progress to new instructions via breakpoints. Individual instructions can be added into the method, but can only be added from inside a **Phase**. Methods are built up using phases, where each phase corresponds to a step in a filtration run. See UNICORN Method Manual for more information about method structure, definitions, and concepts of methods in UNICORN.

The principle of inserting an instruction in a method is as follows:

- 1. Enter the **Breakpoint** in minutes or volume (depending on base) for the instruction.
- 2. Select an individual instruction under the Instructions group.
- 3. Select the macro instruction in the dropdown list or enter the parameter.
- 4. Click *Insert* to add the instruction to the method.
- **Note:** All Strategy instructions for the ÄKTAcrossflow are listed in Chapter 14 Strategy instructions, on page 268.

Create a new method

Use Text Instructions to create a method as follows:

Step	Action
1	Select the <i>Method Editor</i> module in UNICORN.
2	To create the new method. click on the Create a new method icon in the UNICORN Method Editor .

4 Handling methods in the ÄKTAcrossflow

3

4.2 Creating a new method

4.2.2 Create crossflow methods using Text Instructions

Step Action

Select the ÄKTAcrossflow system, choose **Empty Method**, and click **OK**.

Result:

UNICORNwill create an empty method with a main base and mandatory *Method Settings* phase.

4

Select the *Text instructions* tab to start building up the method.

UNICORN will automatically select the Instruction group **Other** and instruction **Base** in the **Instruction Box**.

- From the drop-down menu, select the base type. For ÄKTAcrossflow, the first base parameter can be either:
 - a. Time or
 - **b.** Volume

Note:

6

By default in UNICORN, **Column Volume (CV)** is set as the base. This is not useful in ÄKTAcrossflow methods and will lead to incorrect methods.

Instruction Box		
Breakpoint	Instructions:	Demoster for Deep
0.00 ¢ CV Var	Other Base Block Continue End_Block End Evaluate Row warning Hold Loop End Loop Message New chromatogram Pause Ready Set mark Snapshot	Paralitetes tot base Base Time Volume
Insert Char	Ige Replace Delete	

Click Change.

4 Handling methods in the ÄKTAcrossflow

4.2 Creating a new method

4.2.2 Create crossflow methods using Text Instructions

Add instructions to a method

To add instructions to the method, create a new phase using the following steps:

Step Action

1 Drag the **User Defined** phase in the **Predefined Phases Library** into the **Method Outline** pane. Rename the phase if desired.

Result:

UNICORNinserts a new, empty phase into the method.

		Phase Properties Text Instructions
Method Settings	ĮΤ	(Main) - 0.00 Base: Time - 0.00 Phase: Method Settings
Simple method	įΤ	B⊢∎ 0.00 Phase: Simple method

Note:

A separate base can be set for every phase. By default it will be set as **Same As Main**, which refers to the base set in the first line of the method.

Step Action

2 To insert instructions into the phase, highlight **Base** →**SameAsMain** and select instructions from the **Instruction Box** at the bottom of the **Method Editor** page.

Select the group of instructions, for example **Transfer**.

Note:

3

Instructions are grouped according to functionality: for example, **Recirc** contains all of the relevant instructions for the recirculation pathway; **Per-***meate* contains the instructions to start the filtration process and control the permeate pathway; and **Transfer** contains the instructions to bring liquid into the reservoir. (See Chapter 14 Strategy instructions, on page 268 for a description of the instructions).

- 4 Handling methods in the ÄKTAcrossflow
- 4.2 Creating a new method
- 4.2.2 Create crossflow methods using Text Instructions
 - Step Action
 - 4 Select an instruction within the group.

5 Enter a parameter value or select valve position from the dropdown menu.

6 Click *Insert* to place the instruction in the method.

- 7 To add second instruction, highlight the first instruction.
- 8 Select the desired instruction in the **Text Instructions** box

Step	Action
9	click <i>Insert</i> . <i>Result:</i> The new instruction will be added below the highlighted instruction.
	Result:
	click Insert .The new instruction will be added below the highlighted in- struction.
	(Main) 0.00 Base: Time 0.00 Phase: Method Settings 0.00 Phase: Initial Setup 0.00 Phase: Fill Sample 0.00 Base: SameAsMain 0.00 Transfer_Valve_Blocks: T-VB-In 1 0.00 Set_TrtVol_Totalizer: 0.00 {ml} 0.00 End_Block 0.00 Phase: Concentration 0.00 Phase: Recovery

10 To delete an instruction row, select the row and click **Delete**.

4 Handling methods in the ÄKTAcrossflow

4.2 Creating a new method

4.2.2 Create crossflow methods using Text Instructions

Step Action

11 By default, both instructions are executed by UNICORN at breakpoint 0 minutes. To introduce a delay in the execution of instructions, change the breakpoint for the next instruction, and click *Insert*.

Instruction Box			
Breakpoint	Instructions:		
0.10 ¢ min	Instructions:	Parameters for TransferFlow FlowRate Var	[0.0 - 200.0] 200
Insert Chan (Main) (Main) (0.00 (0.00 (0.00 (0.00 (0.00 (0.00	ge Replace Delete Base: Time Phase: Method Settings Phase: Initial Setup Phase: Fill Sample		
	0 Base: SameAsMain		
0.0	0 Transfer_Valve_Blocks: T-VB	-In1	
0.0	0 Set_TrfVol_Totalizer: 0.00 {m	1}	
0.1	0 TransferFlow: 200 {ml/min}		
0.1	0 End_Block		
⊡ … <mark></mark> 0.00	Phase: Concentration		
÷ 0.00	Phase: Recovery		

Note:

The instruction to end the phase, **End_Block**, automatically adjusts to the new breakpoint. This instruction can be changed to further introduce delay into the method. Highlight **End_Block** and in the **Instruction Box**, change the breakpoint to 2 minutes, and click **Change**.

4 Handling methods in the ÄKTAcrossflow
 4.2 Creating a new method
 4.2.2 Create crossflow methods using Text Instructions

4 Handling methods in the ÄKTAcrossflow

4.2 Creating a new method

4.2.2 Create crossflow methods using Text Instructions

Step Action

Note:

If the base in the phase is time, all breakpoints are given in time. If volume is selected as base, the breakpoints will be given in volume.

Instruction Box			
Breakpoint 0.00 \$ ml Var	Instructions:	Parameter	s for MethodBase Base PermeatePump PeedPump InsuferRung PermeatePump
Insert Chan	ge Replace Delete		

- 12 Repeat steps 1 to 5 until all instructions are inserted in the method.
- 13 To change a breakpoint value or parameter in an instruction, highlight the instruction, enter a new value, and click *Change* or *Replace*.

Note:

When changing parameters, the instructions both work in the same way. However, when changing breakpoints, **Change** will recalculate all following breakpoints to maintain the length of time or volume between instructions, whereas **Replace** will not recalculate the breakpoints and will only change the breakpoint for the highlighted instruction.

Tip:

To create separate steps within the method, create new phases for each step.

Finalize the method

Finalize and save the new method as follows:

- Step Action
- 1 To end the method, select Instruction group **Other** and the instruction **End**.

UNICORN will also automatically end when no other instructions are present to execute.

To save the method, select **File** \rightarrow **Save**.

🛅 🦨 Methods, Folders 🔹 🗐	•		
Folder name	System	Last modified	Created by
😑 📑 G5CD6250HXDE			
AKTAcrossflow		03/06/2018 23:19	Default
🗷 📴 Default Home		27/09/2016 15:18	System
•	III		•
Name: Simple method			
System: AKTAcrossflow			•
۷		Save	Cancel

3

2

Choose folder location, and select system.

4 Handling methods in the ÄKTAcrossflow

4.2 Creating a new method

4.2.2 Create crossflow methods using Text Instructions

Step	Action
------	--------

4	Enter a method name and click Save .
---	---

Dhase Droperties	Tout Instructions IT
Phase Properties	
(Main)	
0.00 Base: Ti	me
🗄 🗧 0.00 Phase: N	Method Settings
🖃 🗧 0.00 Phase: S	Simple method
0.00 Base	: SameAsMain
0.00 Trans	sfer_Purge_Valve: Waste
0.20 Trans	sfer_Purge_Valve: To_Reservoir
0.20 Trans	sfer_Valve_Blocks: T-VB-In1
0.40 Trans	sfer_Valve_Blocks: T-VB-In2
0.60 Trans	sfer_Valve_Blocks: T-VB-In3
0.80 Trans	sfer_Valve_Blocks: T-VB-In4
1.00 Trans	sfer_Valve_Blocks: T-VB-In5
1.20 Trans	sfer_Valve_Blocks: T-VB-In6
1.40 Trans	sfer_Valve_Blocks: T-VB-In7
1.60 Trans	sfer_Valve_Blocks: T-VB-In8
1.80 Trans	sfer_Valve_Blocks: Closed
1.80 Reter	ntate_Valve_Block: R-VB-Out1
- 2.00 Reter	ntate_Valve_Block: R-VB-Out2
2.20 Reter	ntate_Valve_Block: R-VB-Out3
2.40 Reter	ntate_Valve_Block: R-VB-Recycle
2.40 Perm	eate_Valve_Block: P-VB-Out1
2.60 Perm	eate_Valve_Block: P-VB-Out2
2.80 Perm	eate_Valve_Block: P-VB-Out3
	eate_Valve_Block: P-VB-Recycle
	eate_Valve_Block: Closed
3.20 End_	Block

Figure 4.1: Example of a simple ÄKTAcrossflow method

5 Perform crossflow runs manually

About this chapter

This chapter contains information on how to perform and monitor ÄKTAcrossflow methods manually without using the **Method Wizard**.

In this chapter

Sectio	ection	
5.1	Executing text instructions	86
5.2	Monitoring the run	89

Introduction

The most convenient way to perform crossflow runs is to use the **Method Wizard** to create methods. However, it is always possible to perform process steps using the manual mode in UNICORN via the **System Control** module.

Note: All Strategy text instructions and parameters are listed in Chapter 14 Strategy instructions, on page 268.

5.1 Executing text instructions

5.1 Executing text instructions

To manually execute text instructions, use the following procedure.

Step Action

1 In the **System Control** window in UNICORN, select **Manual** → **Execute Manual instructions**.

Result:

The *Manual instructions* dialog is displayed.

Desim	Parameters for Transfer low			[here]	Bullion	
Permeste	FlowHate	(0.0 - 200.0)		riset	Lieiera	
Transfer		0.0 ç milmin				
TransferFlow						
Constant_Retentate_Volume						
Transfer_Valve_Blocks						
Cat Tellol Totalsar						
DF_Exchange_Factor						
ConstRVol_P						
Alams&Mon						
Other						
re result as:			Browse			

- 2 Select instruction group, for example, *Transfer*.
- 3 Select instruction, for example, *Transfer_Valve_Blocks*.
- 4 Select an inlet valve position from the drop-down menu.

Execute Cose

Step	Action				
5	Click Execute .				
	Hastuctions: B Recirc B Constant Transfer Towner Transfer Towner Transfer Towner Transfer Towner Transfer Towner Transfer Towner DF_Schwarp, Sator ConstRivel, P B Alarma Maken B Other	Parameters for Transfer_Valve_Bocka Macro [T-VB-In1	v	Instruction execution list	

6 Select next instruction, for example **TransferFlow**.

Recirc Remonte	RowRate	[0.0 - 200.0]		inset	Delete	
Transfer		50.0 ‡mil/min		TransferRow 50	0	
Constart, Reterrate, Volume Transfer, Valve, Bocks Transfer, Purpe, Valve Ser, Trifvol, Totalzer DF, Exchange, Factor ConstRVol, P Alams&Mon @ Other						
ave result as:			Browse			

Browse...

- 7 Enter a parameter value, for example 50 mL/min.
- 8 Click **Execute**.

Save result as:

Auto update of parameters during run

Note:

It is also possible to **Insert** a series of instructions into the **Instruction execution list** and click **Execute** so that UNICORN executes all instructions at once. There are, however, some limitations in executing valve and pump instructions simultaneously on the ÄKTAcrossflow; therefore, it is recommended to execute each instruction individually.

9 To stop the operation, click the *End* or *Pause* button in the *System Control* window.

Safety precautions General

5.1 Executing text instructions

WARNING

Do not operate the ÄKTAcrossflow system at pressures above the specified maximum pressure (5.2 bar).

WARNING

Always use appropriate Personal Protective Equipment (PPE) during operation and maintenance of this product.

CIP method

Be very careful when running a method using a CIP (clean-in-place) solution containing sodium hydroxide (NaOH).

WARNING

NaOH is corrosive and therefore dangerous to health. Avoid spillage and wear safety glasses, safety gloves, and protective lab coat.

CAUTION

Always make sure that the filters and system components are compatible with sodium hydroxide at the concentration, time, and temperature used.

5.2 Monitoring the run

Introduction

This section describes the data shown in **System Control** during a run and the procedure to customize the view of the different panes. It also describes how to enable alarm and error notifications. It is possible to view the ongoing method run in the **System Control** module.

The current system state is shown in the **System state** box in the **Run Data** pane. For example, it may state **Method Run**, **Manual Run**, or **Hold**.

Selected curves are shown in the *Chart* pane.

The current flow path is shown in the **Process Picture** pane.

Note: To find an overview of the **System Control** user interface, see UNICORN 7 System Control Manual.

Open the Customize dialog

To customize displayed information and data in the different panes, use one of the following options.

- Either click the Customize button in the tool bar or
- 2. Right click in the different panes (except **Process Picture**) and click **Customize**.

Result: The **Customize** dialog opens.

5 Perform crossflow runs manually

5.2 Monitoring the run

Note: Further information about the settings in the **Customize** dialog can be found in the **Online Help** and in the UNICORN System Control manual.

To rearrange the display panes, drag and drop them to the desired location.

Example of displayed information:

ARTA crossifie	w - U/PS0062										
Run Data											
onnection	System state	Acc. volume	Block values	Acc. tee	Block Sme	Scouting no.	UV >>	Tell low 35-	FeedFlaw >>	Ref low 35	-
n malkar	FeedPress 32	(J400 et	ParmPress	(RetVol >>	ResVol >>	Permitel 22	TransVel 35	pit 33	Cond 33	Temp	-
edinie	5.30 ber	0.25 bar	0.27 ber	40.03 est	[14:03 ml	165.53-44	431.71 et	1.95	0.000 m5/cm	2.2.10	
aut -	THP	Flux	Shear	Conclutor	DF_X.Fact		Bun Data				
7 ber	1004 per	100 Del	low.	10.00	[0.00		Run Data				
Run Log (Filter o											
I min Method(as	e FeedPump										
I min Block Stop,	Feet, Fund										
min base) ine	press, volucios pres, con	North-Analysis					RunLog				
min Peedrabe S	10 (minut										
i min Block Cella	-Optitime.										
min Base Time	Smin), 1/6-8 100 (ml), Coli	on:SanaJaMan									
min End, Block											
1 min End, Block											
1 min Engly Firms	main #1/6-Out/ 100 lbar	1 600.0 Sectional									
11 min Engty-Fese 11 min Hold Letil 5	moir P-VB-Out2 3.00 (ber Impt-PesFinished Equals	(600.0 (milmin) 1 Infinite (min)									
11 min Engty-Fesse 13 min Hold yntil E	nvair 7-16-0µ2 100 (ber IngtyPesFinished Equals	(600.0 (milmin) 1 infinite (min)				1					
1 min Engtyffese 1 min Hold until E Process Picture	evoir R-VB-Ou2 100 be ingtyPesFinished Equals	(600.0 (mitmin) 1 infinite (min)			• x	Chart (Zoom)					
1 min Engty-Rese 1 min Hold until 5 Process Picture	nosis R VB-0x2 100 bas ings;ResFinished Escale	(600.0 (intimin) 1 infinite (min)	_		• ×	Ourt (Zoom)					200
1 min Engly-Rese 1 min Hold until E Process Picture	nosis Pr //B-Out2 102 (be ings/PeerFronted Equals	(400.0 jedmed Tiefene (end)	raasta-10		• *	Ourt (Zoom)	- Cond		- nus Cen	Pater 07,3,740	
I min Engly Fease I min Hold until E Process Picture Wester-oto	nosis 71-1/8-0x2 120 (be ingg PeeFinished Equals	(600.0 (retried 1 inform (red) 2723/25	reste-10	2	• *	Ourt (Zoom)	— Cent	-	- Pus	fear — 01,0,1ed -	
1 min Dropy Free 1 min Hold until 6 Process Picture mat for-odd	nosis Pri 16-040 120 (be resp. Peer Fronked Equals Den for Care for Care for Care for	(400.0 (retried 1) Infinite (red) 295455		2	• X	Ourt (Zoon)	- Cent		— Pus —	fata — 01,0,0 at -	-
1 min Engryffese 1 min Hold until E Process Picture Tea far-olds	Profe Profe Out 2120 (ber Profe Out 2120 (ber	(600.0 (retried 1 inferite (red) Tracket Particles		2	• ×	Ourt Good	— Cent	-	— Pus — Can	fate — 0°20,941 -	Par Lig
1 min Engly Reset 1 min Hold until 6 Process Picture West for -ods	nor PVB-0x0 120 (be rep/Ref Poster Equals	1 Inform (soc)		3	* X	Ourt (Zoon)	- Ceni	-1	— Pus — Cen	fada — Ofjojina –	Part US
1 min Engly Anne 1 min Hold until E Process Picture Process Picture Process Picture Process Picture Process Picture Process Picture Process Picture	And Fride Out 2 12 (See See See See See See See See See Se	(BOD O (retirend) 1 Indivite (reid) Production Pro	resta-10	3	• *	Ourt (Zoon)	- Cond	1	- nus - cen	data — Orjujan —	- Par Lig
I min Engly Fesse I min Hold until E Process Picture Bestre-dis I I I I I I I I I I I I I I I I I I I	rosto Pr. VR-Out 2 30 lbr instruction for the second seco	i 600.0 (retinen) 1 telener (reid) 	ranta-10	2	• X	Ourt (Zoon)	- Cent		- ha - con Chart	9449 — 97,1940 -	
I min Englij Fese min Hold until E Inocess Picture ang far-dit Inocess Factore	And Professional State (Second	(BOD 0 (retined) 1 before (reis)		2	• X	Ourt (Zoond)	- Cend		- nus - con Chart	dadar — Orjugani —	
min Engly Feed min Hold until E hoccess Fecture and fee-ods	ense Prive-Out 310 Bar Integrate Postbad Equals	(1000) (settined Technic (sec)	Process	2 Picture	**	Ourt (Zoon) 1 0 000 0000 1 0 000 4 0 3 0 3 0 0 000 0 000	5444		- nu cu Chart	1445 — 173,540 -	- Par Lig
Inic Engli Anna Inic Hold cell E Process Pacture and Far-olds Inic Tar-olds Inic Tar-olds Inic Tar-olds	And Andrewski an		Process	2 Picture	- X	Chart (Zoon)	- Cend		- nus - con Chart	dadar — Orjugani —	
I nin Engli Anna I nin Hold until E Process Pacture Westfre-dis Until Fre-dis Until Fr		1 000 0 (minue) 1 informe (nor) Particulation of the Particulation of the Particulat	Process	2 Picture	**	Ourt (Zoon)	Cent		- na cen Chart	futr — 01,(100 -	- Part Life
1 min Eingt, Anne 1 min Hold Lettel E Process Pacture Process Pacture Pactur	rest PAR-OLD 28 has reported Equals	1 EUCO S (minue) Tantana (ma) Tantana (ma)	Process	2 Picture	• * *	Chart (2000)	- Cend		- nu - Con Chart	fear — 07,0,740 —	
1 min Rogh Rese 1 min Hold until 6 Process Pacture read for -olds 1 min Hold until 6 Process Pacture read for -olds 1 min Hold until 6 1 m			Process I	Picture	- *	Ourt (Zoon)	Cent	t a labor voice i la	- nu - Con Chart	fada — Dijujadi -	- Part (3)
1 min Dropp Henre 1 min Hold until E Process Pacture Process Pacture Process Pacture Process Pacture Process Pacture Process Pacture		1 Holora (sou)	Process I	Picture	* X	Chart (2000)		an Y and these filters	- Pus - Con Chart	fede — 97,5,1ed -	Ren Lity
I no Rod will be the set of the s			Process I	Picture	***	Ourt (Zoon)	- Cend	and the first first first	- nu - Con Chart	fear Or _a Jan -	- Rec (1)
			Process I	Picture	* X	Chart (Zoon)	594	and the second se	- na - con Chart	futr — 0.j.fut -	Ref (A)
			Process 1	2 Picture	* X *	Chart (Zoon)	Canal		- nu - cen Chart	fada — D., Qial -	Rec (1)
		I BOD D Introd	Process I	Picture	• x	Coart (Zoom)	- Cend	La mark You Block Young La.	- nu - can Chart	fear Dry fear -	
		I BOD Derived Problems P	Process I	Picture	• *	Ourt (Zoon)	Cena	and the second se	- na - con Chart	futr — 0.j.fut -	- Par Li

6 Create preproduct steps using the Method Wizard

About this chapter

This chapter provides information on how to create preproduct steps using the **Method Wizard**. Information is also provided about how to create preproduct methods for Ultrafiltration and Microfiltration using the **Method Wizard**.

In this chapter

Sect	ion	See page
6.1	Preproduct steps: Introduction	93
6.2	Preproduct steps: Description	94
6.3	Preproduct steps: Method Wizard dialogs	99

6.1 Preproduct steps: Introduction

The ÄKTAcrossflow **Method Wizard** can create a series of steps to make sure that a filter is in the proper condition before performing a process run. These steps include:

- Rinsing
- Filter CIP (Clean-in-Place)
- Water Flush
- Water Flux Test (also called Normalized Water Permeability, or NWP)
- Buffer Conditioning

Different combinations of the steps above may be used.

If the system has not been sanitized recently, it may be necessary to start with a sanitization of the system (see *Section 11.1 System sanitization, on page 218*). A sanitization of the system is also recommended when introducing new products (proteins, viruses, or cells) to the system, to avoid cross-contamination.

Condition	Rins- ing	Filter CIP 1	Water flush	Filter CIP 2	Water flush	Water flux test	Buffer condi- tioning
New filter	×					×	×
Same filter, after recom- mended postproduct pro- cedure with terminal wa- ter flush and flux test, no storage							×
Different filter, after rec- ommended postproduct procedure plus storage					×	×	×

The following table summarizes the recommended preproduct steps.

6.2 Preproduct steps: Description

6.2 Preproduct steps: Description

Rinsing

New ultrafilters are typically delivered in a storage solution such as glycerol, which helps to prevent the filter from drying out. Microfilters are often delivered dry. Both types of filters should be rinsed with water prior to use.

This step will:

- Prime the transfer inlet valve position 5 (T-VB-In5) tubing to waste,
- Add a small volume of water to the reservoir to rinse the retentate loop,
- Empty the reservoir,
- Refill the reservoir to a small volume and flush 2 mL water per cm² surface area of the filter out through permeate valve block position 1 (**P-VB-Out1**),
- Empty the reservoir.
- **Note:** Some hollow fibers do not wet out very well with water. If problems occur, for example, if you experience a failed water flux test, it might be necessary to flush the filter manually with an alcohol solution, such as 20% to 30% isopropanol or 20% to 30% ethanol. For more information, refer to the Hollow fiber operating guide.

Filter CIP

A new filter does not necessarily need to be sanitized with a CIP step. However, if a filter is re-used, depending on the postproduct processing, a preproduct CIP step may be desirable.

The filter CIP preproduct step includes an option to perform two filter CIP procedures with an optional water flush between.

This step will:

- Prime the CIP transfer inlet valve positions tubing to waste,
 - **Note:** If CIP 1 only is chosen, only transfer valve block 6 (**T-VB-In6**) is primed; if CIP 2 only is chosen, only transfer valve block 7 (**T-VB-In7**) is primed. If both CIP 1 and 2 are selected, both inlets will be primed.
- Add CIP solution to the reservoir to rinse the retentate loop,
- Empty the reservoir,
- Either fill the reservoir to the maximum volume (small reservoir) or fill to a specified fill volume (large reservoir),
- Rinse 30 mL CIP solution to waste through **P-VB-Out1**,

- Recirculate the permeate back into the reservoir for the *Length of Time* specified in the dialog,
- Empty the reservoir.

The process is repeated if CIP 2 is chosen, with CIP 2 solution on **T-VB-In7**. If a water flush is chosen between CIP 1 and 2, the system will:

- Prime the transfer inlet valve position 5 (T-VB-In5) tubing to waste,
- Add a small volume of water to the reservoir to rinse the retentate loop,
- Empty the reservoir,
- Refill the reservoir to a small volume and flush 10 mL water out through permeate valve block position recycle (P-VB-Recycle) to waste (Transfer_Purge_Valve to Waste),
- Empty the reservoir.
- **Note:** The system will not be sanitized. For sanitization of the system, see Section 11.1 System sanitization, on page 218

Water flush

A water flush step is identical to the rinse step, unless a CIP step has been selected. If CIP is chosen, the water flush step will fill the reservoir to the maximum volume (350 mL for the small reservoir and 1100 mL for the large reservoir) and empty, to make sure that the CIP solution has been removed. It is always recommended to select a water flush after a filter CIP step where NaOH was used. This step should also be used if a filter has not been rinsed with water before a water flux test is performed.

With no preproduct CIP, this step will:

- Prime the transfer inlet valve position 5 (T-VB-In5) tubing to waste,
- Add a small volume of water to the reservoir to rinse the retentate loop,
- Empty the reservoir,
- Refill the reservoir to a small volume and flush 2 mL water per cm² surface area of the filter out through permeate valve block position 1 (**P-VB-Out1**),
- Empty the reservoir.

If following a preproduct CIP step, this step will:

- Prime the transfer inlet valve position 5 (T-VB-In5) tubing to waste,
- Fill the reservoir to maximum volume (350 mL for the small reservoir and 1100 mL for the large reservoir) and empty,
- Add a small volume of water to the reservoir to rinse the retentate loop twice,
- Empty the reservoir,

6.2 Preproduct steps: Description

- Refill the reservoir to a small volume and flush 2 mL water per cm² surface area of the filter out through permeate valve block position 1 (**P-VB-Out1**),
- Empty the reservoir.

Water flux test

A water flux test measures the water permeability of a filter, to control the quality status of the filter. A permeate flux value is often normalized to 1 bar transmembrane pressure and corrected to a temperature of 25°C, and is then called the normalized water permeability (NWP; also called normalized water flux, or NWF). By comparing obtained water fluxes as a function of usage over time, it is possible to determine the cleaning efficiency of the filter CIP and lifetime of a filter.

Note: Always perform a water flush or rinse before a water flux test, to make sure that the filter is thoroughly flushed with water.

It is recommended to perform the test before a product step and after a product step and filter cleaning.

The filtration control mode is dependent on the filter type used.

For flat sheet cassettes, TMP control mode is used. The default TMP value is 1 bar, but this can be edited by the user.

For ultrafilter hollow fibers, TMP control mode is used. The default TMP value is 1 bar, but this can be edited by the user. It is recommended to set the TMP value to 0.5 bar or lower for high molecular weight hollow fiber ultrafilters (≤ 500 kD).

For microfilter hollow fibers (cut off larger than 0.1 μ m), **Normal Flow Filtration** mode is used. **Feed flow** or **Feed pressure** can be selected as a feed control and a value is entered.

This step will:

- Prime the transfer inlet valve position 5 (T-VB-In5) tubing to waste,
- Add a small volume of water to the reservoir to rinse the retentate loop,
- Empty the reservoir,
- Fill a small volume of water to the reservoir,
- Set the system to total recycle (**P-VB-Recycle**, **Transfer_Purge_Valve** to **Reservoir**),
- Set the filtration control mode and wait until the flux has stabilized,
- Measure the permeate flux and set a **Set_Eval_Mark** with the parameter **Normalized_Water_Flux** for easy analysis in the **Evaluation** module.

Data from water flux testing can be analyzed in the **Evaluation** module of UNICORN. In *Figure 6.1, on page 97*, normalized water flux results from a series of measurements are plotted against the number of performed runs with a filter. A standardized temperature correction table compensates for temperature effects due to viscosity. Results are compared to previous tests and provide information about the quality status of the filter.

Figure 6.1: Example of plotted normalized water flux values

- **Note:** Some hollow fibers do not wet out very well with water. If problems occur, for example, if the water flux test fails, it may be necessary to flush the filter manually with an alcohol solution, such as 20% to 30% isopropanol or 20% to 30% ethanol. For more information, refer to the Hollow Fiber Operating Guide.
- **Note:** When comparing status of a filter as a function of time and number of uses, use the same filtration mode parameter each time the water flux test is run.

Buffer conditioning

The buffer conditioning step replaces the liquid in the filter with a buffer that is suitable a processing step with product. The buffer conditioning step will:

- Prime the transfer inlet valve position 2 (T-VB-In2) tubing to waste,
- Add a small volume of buffer to the reservoir to rinse the retentate loop,
- Empty the reservoir,
- Fill a small volume of buffer to the reservoir,
- Flush the filter with the selected volume, through permeate recycle to waste (**P**-**VB-Recycle**, *Transfer_Purge_Valve* to *Waste*),
- Set the system to total recycle (**P-VB-Recycle**, *Transfer_Purge_Valve* to *Reservoir*) for 5 minutes,

6 Create preproduct steps using the Method Wizard

6.2 Preproduct steps: Description

- Empty the reservoir.
- **Note:** If a CIP has been performed, we recommend performing a buffer conditioning after the water flush to ensure that the pH in the system is suitable for any following product steps.

6.3 Preproduct steps: Method Wizard dialogs

About this section

This section provides information on how to create preproduct steps in the **Method Wizard** when using hollow fibres and flat sheet cassettes, and provides a description of each step.

In this section

Section	on	See page
6.3.1	Basic settings dialog	100
6.3.2	Preproduct step dialog	106
6.3.3	Visualization of the preproduct steps	109

6 Create preproduct steps using the Method Wizard

6.3 Preproduct steps: Method Wizard dialogs

6.3.1 Basic settings dialog

6.3.1 Basic settings dialog

Basics settings dialog overview

The image below shows an example of the **Basic Settings** dialog.

Filter List UFP-	3-C-2U	•			
Steps	Product	Postproduct			
Hollow Fibre (specifi	cation per fil	ter)			
Lumen Diameter	0.5	mm (0.10-10.00 mm)			
Number of Fiber	s 12	(1-1000)			
Pore Size	3	(0.05 to 1000 um or kD)			
Surface Area	50	cm^2 (16-1200 cm^2)			
Lumen Hold-Up	Vol 1	ml (0.0-25.0 ml)			
Feed Pressure Li	mit 4.5	bar (0-5.2 bar)			
TMP Limit	3.4	bar (0-5.2 bar)			
System setup					
Number of filters	1	-			
Extra Tubing Vol	ume 0.0	ml (0.0-25.0 ml)			
Reservoir Size					
35	50 ml				
💿 1100 ml					
Tubing kit					
Small ID (1.7 mm)					
🔘 La	arge ID (2.9 r	nm)			
	Hollow Fibre (specifi Lumen Diameter Number of Fiber Pore Size Surface Area Lumen Hold-Up V Feed Pressure Li TMP Limit System setup Number of filters Extra Tubing Vol Reservoir Size @ 38 0 11 Tubing kit @ Sr 0 La	Hollow Fibre (specification fill Lumen Diameter Number of Fibers Pore Size Surface Area Lumen Hold-Up Vol Feed Pressure Limit 3.4 System setup Number of filters Extra Tubing Volume © 350 ml © 1100 ml Tubing kit © Small ID (1.7 r © Large ID (2.9 r			

Basic Settings →**Hollow Fibre**

To enter the basic settings for use with hollow fibre filters, use the following procedure:

Step	Action
1	In Basic Settings , select Hollow Fibre.

Step Action

2 In the **Method** list, select **Concentration/Diafiltration**.

Basic Settings

Filter Type	Hollow Fibre
Method	Concentration \Diafiltration -
Filter List	Calibrate level sensor Concentration\Diafiltration
	Installation Test System Sanitization

In the **Filter List**, compatible GE hollow fiber filters are displayed. Select the desired filter, or if using a hollow fiber from another manufacturer, select **User-defined** filter.

4

3

Select **Preproduct** process step.

6 Create preproduct steps using the Method Wizard

6.3 Preproduct steps: Method Wizard dialogs

6.3.1 Basic settings dialog

Step	Action
5	The Hollow Fibre (specification per filter) area displays the recommen- ded default values for the selected filter. The values can be edited as de- sired.

Hollow Fibre (specification	onperfilter)	
Lumen Diameter	0.5	mm (0.10-10.00 mm)
Number of Fibers	4	(1-1000)
Pore Size	3	(0.05 to 1000 um or kD)
Surface Area	40	cm^2 (16-1200 cm^2)
Lumen Hold-Up Vol	1	ml (0.0-25.0 ml)
Feed Pressure Limit	4.5	bar (0-5.2 bar)
TMP Limit	3.4	bar (0-5.2 bar)

Note:

If **User-defined** filter has been selected, enter the lumen diameter, number of fibers, surface area, lumen hold-up volume, feed pressure limit, and TMP limit. This information is usually available from the manufacturer.

Note:

When using TMP as the filtration control mode in a method, always choose a TMP value in the product steps that is below the TMP limit. Otherwise, the TMP limit may lead to a TMP pressure alarm, which will pause the run.

6

If several filters are assembled together in parallel, select in the **System setup** section the number of filters (1 to 3). If only one filter is used, keep the default value of 1.

7

If any extra tubing is used on the recirculation loop, calculate the extra volume added and enter the value in the **Extra Tubing Volume** box.

System setup		
Number of filters	1 🔹	
Extra Tubing Volume	0.0	ml (0.0-25.0 ml)

6 Create preproduct steps using the Method Wizard 6.3 Preproduct steps: Method Wizard dialogs 6.3.1 Basic settings dialog

Step	Action
8	Select the reservoir size and tubing kit i.d. used in the recirculation loop.
	Reservoir Size
	350 ml
	1100 ml
	Tubing kit
	Small ID (1.7 mm)
	Carge ID (2.9 mm)

Basic Settings \rightarrow Flat Sheet

To enter the basic settings for use with flat sheet filters, use the following procedure:

Step	Action		
1	In the Basic Settings window, select Filter Type \rightarrow Flat Sheet .		
2	In the Method drop-down list, select Concentration\Diafi		
	Basic Settings Preproduct Steps Product Steps Recovery Postproduct Steps	Basic Settings Filter Type Filter Filter Filter Filter Filter List User-defined filter Concentration/Disfitration Concentration/Disfitration	
3	In the Filter List , User-defined filter is auto selected.		
4	In the next list, s	select Concentration/Diafiltration.	
	Basic Setting	js	
	Filter Type	Hollow Fibre In Flat Sheet	
	Method	Concentration	
	Filter List	User-defined filter	
		Concentration/Diafiltration	
		Concentration/Diafiltration UF Process Optimization	

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs
- 6.3.1 Basic settings dialog

Step	Action			
5	Select Preproduct proce	ss step.		
	Steps V Preproduct Product	Postpr	oduct	
6	The Flat Sheet (specifice user-defined flat sheet ca following information:	ation per f Issette. The	ilter) displays the default va e end user must enter value	alues for a s for the
	a. Surface Area			
	b. Pore Size			
	c. Filter Hold-Up Vol			
	d. Feed Pressure Limit			
	e. TMP Limit			
	Flat Sheet (specification)	per filter)		
	Surface Area	16	cm^2 (16-1200 cm^2)	
	Pore Size	1	(0.05 to 1000 um or kD)	
	Filter Hold-Up Vol	0	ml (0.0-25.0 ml)	

This information is usually available from the manufacturer.

0

0

Feed Pressure Limit

TMP Limit

Note:

7

When using TMP as the filtration control mode in a method, always choose a TMP value in the product steps that is below the TMP limit. Otherwise, the TMP limit may lead to a TMP pressure alarm, which will pause the run.

bar (0-5.2 bar)

bar (0-5.2 bar)

If several filters are assembled together in parallel, select in the **System Setup** section the number of filters (1-3). If only one filter is used, keep the default value of 1.

System setup		
Number of filters	1 🔻	
Extra Tubing Volume	1 2	ml (0.0-25.0 ml)
Reservoir Size	3	J

Step	Action
8	If any extra tubing is used on the recirculation loop, calculate the extra vol- ume added and enter the value in the Extra Tubing Volume box.
	Extra Tubing Volume 0.0 ml (0.0-25.0 ml)
9	Select the reservoir size and tubing kit i.d. used in the recirculation loop.
	Reservoir Size
	350 ml
	1100 ml
	Tubing kit
	Small ID (1.7 mm)
	Carge ID (2.9 mm)

6 Create preproduct steps using the Method Wizard

6.3 Preproduct steps: Method Wizard dialogs

6.3.2 Preproduct step dialog

6.3.2 Preproduct step dialog

Rinsing

To include a rinsing step in the method, use the following procedure:

Step	Action
1	Rinsing
	Check the Rinsing box. Rinse Volume 100
2	Select the rinsing volume; this is the volume of water which will be flushed through the filter into the permeate. The default value is 2 mL per cm ² of filter surface area.

Filter CIP

To include a filter CIP step in the method, use the following procedure:

Step	Action		
1	Check the Filter CIP box.		
2	Select either a one- or two-step CIP, with an optional water flush in be- tween.		
3	Enter the desired CIP circulation time in the Length of Time box. Filter CIP CIP 1 Length of Time 60 min (0-9999 min) CIP 2 Length of Time 60 min (0-9999 min) Water Flush between CIP		

Water flush

To include a water flush step in the method, use the following procedure:

Step	Action

1 Check the **Water Flush** box.

Step	Action
2	Select the flush volume; this is the volume of water which will be flushed through the filter into the permeate. The default value is 2 mL per cm ² of filter surface area.
	Water Flush Volume
	Note: After a filter CIP, it is recommended to run a water flush.
	Note:

If a water flux test will be performed, **Rinsing** or **Water Flush** should be performed just before the water flux test.

Water flux test

To include a water flux test in the method, use the following procedure:

Step	Action		
1	Check the Water Flux Test box.		
2	Select TMP or NFF (Normal Flow Filtration) as control mode.		
	a. The default TMP setting for all ultrafilters is 1 bar. For high molecular weight hollow fiber ultrafilters (≥ 500 kD), it is recommended to set this		
	Water Flux Test TMP bar (0.01-5.2 bar) 		
	value to 0.5 bar. 🔍 NFF		
	b. NFF (feed pressure) is default for microfiltration hollow fibers with a cut off of 0.1 μm and larger.		
	Vater Flux Test		
	© TMP		
	NFF FeedPressure Feed Control for NFF 0.69 bar (0.01-5.20 bar)		

c. NFF control of feed flow is also possible.

Note:

When comparing status of a filter as a function of time and number of experiments, we recommend using the same filtration mode parameter each time you run the water flux test. 6 Create preproduct steps using the Method Wizard

6.3 Preproduct steps: Method Wizard dialogs

6.3.2 Preproduct step dialog

Buffer conditioning

To include a buffer conditioning step in the method, use the following procedure:

Step	Action
1	Check the Buffer Conditioning box.
2	Select the buffer rinse volume; this is the volume of buffer which will be flushed through the filter into the permeate. The default value is 30 mL. This can be edited to a maximum value of 300 mL for the small reservoir or 1000 mL for the large reservoir.
	Buffer Conditioning Buffer Rinse Volume 30 ml (30-300 ml)

Note:

If a CIP has been performed, we recommend performing a buffer conditioning after the water flush to ensure that the pH in the system is suitable for any following product steps.
6 Create preproduct steps using the Method Wizard 6.3 Preproduct steps: Method Wizard dialogs 6.3.3 Visualization of the preproduct steps

6.3.3 Visualization of the preproduct steps

For information on specific instructions, for example **Constant Retentate Volume**, see Chapter 14 Strategy instructions, on page 268.

Depending on the previous step, some of the steps begin with a **Prepare System** or **Prepare System and Reservoir** block.

Prepare System and Reservoir

2

The **Prepare System and Reservoir** step fills and empties the reservoir completely and thoroughly flushes the recirculation loop. The inlet valve position chosen depends on the liquid of the specific step.

Stage Description

1 The transfer inlet used is primed to waste through the transfer purge valve.

The reservoir is filled to the maximum volume (350 mL for the small reservoir, 1100 mL for the large reservoir).

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs

6.3.3 Visualization of the preproduct steps

The reservoir is filled to a minimum working volume. A low transfer and equal feed flow is set, and 50 mL is pumped out of the retentate to waste through **R-VB-Out2**.

5

4

The tubing in the pathway between **R-VB-Out2** and the reservoir is rinsed by recirculating at a low feed flow rate for less than a minute.

Stage De	escription
----------	------------

- 6 The reservoir is emptied and refilled with the minimum working volume.
- 7 A low transfer and equal feed flow is set, and 50 mL is pumped out of the retentate to waste through **R-VB-Out2**.

8

The reservoir is filled to a low volume.

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs

6.3.3 Visualization of the preproduct steps

9

Stage Description

The retentate is recirculated for one minute using a feed pressure control of 80% of the maximum feed pressure value (to a maximum of 3 bar).

10 The reservoir is emptied through **R-VB-Out2**.

Prepare system

The **Prepare System** step performs a flush of the recirculation loop.

6 Create preproduct steps using the Method Wizard 6.3 Preproduct steps: Method Wizard dialogs 6.3.3 Visualization of the preproduct steps

Stage Description

The reservoir is filled to a low volume.

3

2

The retentate is rinsed out **R-VB-Out2** for the hold-up volume plus 5 mL.

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs

6.3.3 Visualization of the preproduct steps

Stage Description

4 The retentate is recirculated for one minute using a feed pressure control of 80% of the maximum feed pressure value (to a maximum of 3 bar).

5 The reservoir is emptied through **R-VB-Out2** (Waste).

Rinsing

The *Rinse* step rinses storage solution from the filter.

Stage	Description
1	The system is prepared according to the procedure described in Prepare
	system, on page 112. The transfer inlet used is T-VB-In5 (water).

6 Create preproduct steps using the Method Wizard 6.3 Preproduct steps: Method Wizard dialogs 6.3.3 Visualization of the preproduct steps

Stage Description

2 The reservoir is filled with 100 mL water. **Constant Retentate Volume** is activated. The crossflow rate is set at a feed pressure 80% of the maximum feed pressure value (to a maximum of 3 bar) and TMP regulation of 1 bar is started. The volume input in the dialog is rinsed through the filter out **P-VB-Out1** (Waste).

Constant Retentate Volume is disabled. 10 mL of the reservoir volume is emptied through the permeate recycle (**P-VB-Recycle**) to waste (**Transfer_Purge_Valve Waste**).

3

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs

6.3.3 Visualization of the preproduct steps

Stage Description

4 The rest of the reservoir volume is emptied through **R-VB-Out2** and the rinsing is complete.

Filter CIP

The *Filter CIP* step circulates cleaning solution to clean the system and the filter.

Stage	Description
1	The system is prepared according to the procedure described in <i>Prepare</i> system, on page 112. The transfer inlet used is T-VB-In6 or T-VB-In7 (CIP solution), depending on whether 1 or 2 CIP steps were selected.
2	The reservoir is filled with CIP solution to either the maximum volume (small reservoir, 350 mL) or a specified fill volume (large reservoir, mini- mum 200 mL (default) to 1100 mL).
3	Constant Retentate Volume is activated and the permeate valve is opened to P-VB-Out1 . The crossflow rate is set at a feed pressure of 80% of the maximum feed pressure value (to a maximum of 3 bar) and flux rate filtration control of 30 LMH (flat sheet cassette, HF microfilter) or TMP filtration control of 1 bar (HF ultrafilter) is started.

After 30 mL has passed through the membrane, the permeate valve is set to **P-VB-Recycle** and the liquid is recycled back into the reservoir for the specified recirculation time.

6

5

After the specified CIP recirculation time, **Constant Retentate Volume** is disabled and the reservoir is emptied through **R-VB-Out2**.

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs

6.3.3 Visualization of the preproduct steps

Stage Description

- 7 If a **Water Flush between CIP** has been selected, the system is prepared according to the procedure described in *Prepare system, on page* 112. The transfer inlet used is **T-VB-In5** (water).
- 8 The reservoir is filled with 100 mL of water and 10 mL of the reservoir volume is emptied through the permeate recycle (**P-VB-Recycle**) to waste (**Transfer_Purge_Valve Waste**).

9 The reservoir is then emptied through **R-VB-Out2**.

- 10 If a CIP 2 step has been selected, the system is prepared according to the procedure Prepare System described in *Prepare system, on page 112.* The transfer inlet used is **T-VB-In7** (CIP 2 solution).
- 11 The reservoir is filled with either 100 mL CIP 2 solution (small reservoir) or the specified fill volume (large reservoir) and the procedure described above in steps 3 to 6 is repeated.

Water flush

If the previous step was a filter CIP, the system and reservoir are thoroughly flushed according to the procedure described in *Prepare System and Reservoir, on page 109*

Otherwise, the system is prepared according to the procedure described in *Prepare* system, on page 112. The transfer inlet used is **T-VB-In5** (water).

Stage Description

1 The reservoir is filled with 100 mL water. **Constant Retentate Volume** is activated, and the permeate valve is opened to **P-VB-Out1**. The crossflow rate is set at a feed pressure 80% of the maximum feed pressure value (to a maximum of 3 bar) and flux rate filtration control of 30 LMH (HF microfilter) or TMP filtration control of 1 bar (HF ultrafilter, flat sheet cassette) is started. The filter is flushed with specified flush volume out **P-VB-Out2** (default volume is 2 mL per cm² of filter surface area).

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs
- 6.3.3 Visualization of the preproduct steps

Stage Description

2 After the specified flush through the filter, **Constant Retentate Vol***ume* is disabled. If a **Water Flux Test** has been selected, the system skips to the test; if not, 10 mL is emptied through the filter. **P-VB** is set to **Recycle** and the liquid leaves the system through **Transfer_Purge_Valve Waste**.

3 The reservoir is emptied through **R-VB-Out2**.

Water flux test

If the step prior to the water flux test is a water flush step, the reservoir remains filled and the **Water Flux Test** is a continuation of the **Water Flush** step. If the water flux test is used as a stand-alone step, the system is prepared according to the procedure described in *Prepare system, on page 112*. The transfer inlet used is **T-VB-In5** (water). The reservoir is filled with 50 mL water, **Constant Retentate Volume** is activated, and the permeate valve is opened to **P-VB-Out1**.

Stage Description

1 **P-VB** is set to **Recycle** and the **Transfer_Purge_Valve** is set to **Reservoir**. A permeate flow is started by the specified TMP control (HF ultrafilter, flat sheet cassette; default value 1 bar) or in NFF mode (HF microfilter; default value is feed pressure, determined by the filter pore size). When a stable flux has been achieved, the normalized water flux value is measured by setting a **Set_Eval_Mark** with the parameter **Normal***ized* **Water Flux**.

Before ending the step, 10 mL of water is flushed through the filter. **P-VB** is set to **Recycle** and the liquid leaves the system through **Trans-fer_Purge_Valve Waste**.

2

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs

6.3.3 Visualization of the preproduct steps

Buffer conditioning

1

The **Buffer conditioning** step conditions filter and system components before adding product to minimize adverse chemical reactions.

Stage Description

The system is prepared according to the procedure described in *Prepare system, on page 112.* The transfer inlet used is **T-VB-In2** (conditioning buffer). The reservoir is filled with a small volume of buffer.

Stage Description

2 **P-VB** is set to **Recycle** and the **Transfer_Purge_Valve** is set to **Waste**. The crossflow rate is set at a feed pressure 80% of the maximum feed pressure value (to a maximum of 3 bar) and flux rate filtration control of 30 LMH (HF microfilter) or TMP filtration control of 1 bar (HF ultrafilter, flat sheet cassette) is started. The specified buffer rinse volume is flushed through the filter into the permeate (default value is 30 mL, but this can be edited to a maximum value of 300 mL for the small reservoir or 1000 mL for the large reservoir).

The **Transfer_Purge_Valve** is switched to **Reservoir** and the buffer is recycled for 5 minutes.

3

- 6 Create preproduct steps using the Method Wizard
- 6.3 Preproduct steps: Method Wizard dialogs

6.3.3 Visualization of the preproduct steps

7 Create product steps using the Method Wizard

About this chapter

This chapter provides information on how to create product steps for ultrafiltration and microfiltration using the **Method Wizard**.

In this chapter

Secti	on	See page
7.1	Ultrafiltration	126
7.2	Microfiltration	144
7.3	Visualization of product steps	163

7 Create product steps using the Method Wizard

7.1 Ultrafiltration

7.1 Ultrafiltration

About this section

This section provides information on how to create product methods for Ultrafiltration using the *Method Wizard*.

In this section

Sectio	on	See page
7.1.1	Introduction	127
7.1.2	Basic settings dialog	128
7.1.3	Product steps dialog	129
7.1.4	Concentration step dialog	132
7.1.5	Diafiltration step dialog	137
7.1.6	Recovery dialog	141

7.1.1 Introduction

Concentration

During a concentration step, the volume of sample in the reservoir is reduced. The product is retained at the retentate side of the membrane.

If the sample volume is larger than the reservoir volume, the reservoir can be continuously fed with sample solution (*Fed Batch*).

Diafiltration

Diafiltration is a filtration process used for the removal of smaller ionic solutes, in which one buffer is removed and replaced with an alternative buffer (**Buffer Ex-change**). The product is retained at the retentate side.

A buffer exchange is typically run after a concentrating step using the same filter. This allows for the combination of concentration and diafiltration into one method, using one filter.

If no concentration is performed before a diafiltration step, for example, when diafiltration is the only step, the hold-up volume on the retentate side will dilute the sample. Therefore, if performing a diafiltration first, it is recommended to perform an initial concentration, especially when the sample volume is low. Enter a **Concentration Factor** of 1 as the end point. See *Concentration endpoint*, on page 134.

Product recovery after Concentration/Diafiltration

There are two alternatives to recover the product in the retentate:

- **No Recovery**: select this option if the retentate volume will be recovered manually. The system will enter a Hold with a low recirculation rate to prevent sedimentation, allowing the user to either recover immediately, or end the method and then recover.
- Recovery: the reservoir is first emptied through R-VB-Out3, followed by a buffer chase, allowing the maximum volume of undiluted sample to be recovered. A defined number of flushes can then be selected and the retaining dilute product will be emptied through R-VB-Out1.

For descriptions of the Recovery procedures, see *Section 7.1.6 Recovery dialog, on page 141.*

7 Create product steps using the Method Wizard

7.1 Ultrafiltration

7.1.2 Basic settings dialog

7.1.2 Basic settings dialog

Input the basic settings (filter type, specifications, tubing kit i.d., and size of reservoir) as detailed in *Section 6.3.1 Basic settings dialog, on page 100.*

Select **Product** in the **Steps** selection.

Steps	
📄 Preproduct 📝 Pro	duct 📄 Postproduct

7 Create product steps using the Method Wizard 7.1 Ultrafiltration 7.1.3 Product steps dialog

7.1.3 Product steps dialog

Product Steps **Basic Settings** 1 -Number of Steps Product Steps Step 1 Occentration Occentration Step 1 Recovery Summary Sample loading Use air sensor to terminate sample fill 0 Sample Volume ml (0-80000 ml) Note: -If sample volume is larger than the size of the reservoir, specify the reservoir fill volume on the next page to start the concentration. -Recommended minimum working volume is 23 ml. < Back Next > Finish Cancel Help Set Default

The following illustration shows the product steps dialog screen.

In the **Product Steps** dialog, a minimum working volume is displayed. The minimum working volume is the system hold-up volume including the filter hold-up, with an addition of a small volume in the reservoir. This volume depends on the reservoir size, tubing kit, and filter volume. This is the lowest working volume that is recommended.

Note: Minimum working volume will vary with reservoir size and tubing kit used and is not the same as the system hold-up volume. To maintain smooth processing, a small volume is added to the system hold-up volume in the calculation of minimum working volume. For information on system holdup volume, see Appendix A.

- 7 Create product steps using the Method Wizard
- 7.1 Ultrafiltration
- 7.1.3 Product steps dialog

To set the concentration and diafiltration parameters, follow the steps below.

Step	Actio	n		
1	In the Product Steps dialog, select up to 3 concentration and diafiltration			
		Product Steps		
		Number of Steps		
	steps.	Step 1	2 Concentration © Diafiltration	

Note:

For diafiltration, only 2 steps can be selected with any combination of steps; this is due to the limited number of transfer valve block inlets that are used as standard for diafiltration buffer.

Number of Steps	3 🔹	
Step 1 Step 2 Step 3	 Concentration Concentration Concentration 	 Diafiltration Diafiltration Diafiltration

Step Action

- 2 Enter the sample volume. There are 3 options:
 - a. Enter a set volume.

Note:

If you enter a volume greater than the maximum volume of the chosen reservoir, on the next page a **Fill Volume** must be entered, and the system will operate in **Fed Batch** mode. In this case, the reservoir is continually refilled as a function of the permeate flow. This is possible only when concentration is the first step. If the total sample volume fits into the chosen reservoir size, the system will operate in **Tank Batch** mode.

b. Enter a set volume and check Use air sensor to terminate sample fill. This will activate the air sensor found on T-VB-In1. If air is detected before the sample volume is reached, the air sensor terminates the sample load, but if no air is detected before the sample volume is reached, the sample volume is reached, the sample volume terminates the load.

c. Check Use air sensor to terminate sample fill but leave the sample volume on the default of 80 000 mL. In this case, only air detection on T-VB-In1 will terminate the sample load.

7 Create product steps using the Method Wizard

7.1 Ultrafiltration

7.1.4 Concentration step dialog

7.1.4 Concentration step dialog

The following illustration shows the concentration steps dialog screen.

lasic Settings	Reservoir fill volume	200	ml (5-350 ml)	
Preproduct Steps	to start concentration			
Product Steps				
Step 1	Feed Control	Feed Flow		-
Recovery	Feed flow	0	ml/min (0-600 ml/min)	
ostproduct Steps				
Summary	Control Mode	TMP		•
	TMP	0.0	bar (0.0-5.2 bar)	
	Endpoint			
	Watch for Endpoint	OFF		-
	 Retentate Volume Concentration Factor 	24	ml (24-214 ml)	

If a sample volume that is greater than the chosen reservoir volume (e.g., fed batch operation) or if the **Use air sensor to terminate sample fill** option has been selected, the reservoir fill volume must be entered. The default fill volume is 200 mL for either reservoir but the maximum fill volume will depend on the size of the reservoir chosen. A reservoir minimum is also displayed; this is the minimum recommended working volume for the reservoir (5 mL for the small reservoir, 8 mL for the large reservoir).

Step 1 Concentration			
Reservoir fill volume	200	ml (5-350 ml)	
to start concentration			

Next step: Set the crossflow rate and filtration control mode.

Feed and filtration control

There are four ways to create the crossflow, all of which are controlled by the feed pump:

- Constant **DeltaP**
- Constant Feed Flow
- Constant Retentate Flow
- Shear rate (only when hollow fibre has been selected)

Feed Control Feed flow TMP	Feed Row Delta P Feed Row Retentate Row 0.0 bar (0.0-5.2 bar)
Feed Control Shear	Shear Delta P Feed Flow Retentate Flow
Control Mode TMP	onear TMP ▼ 0.0 bar (0.0-5.2 bar)

Step Action

1 Enter the value for the selected crossflow rate, for example a *Feed Flow* of 50 mL/min.

Note:

When using shear rate as crossflow rate for hollow fibers, the feed flow rate that equals a chosen shear rate must be calculated in advance. The maximum feed flow rate on the system is 600 mL/min, and if a shear rate for the selected hollow fiber exceeds this, the feed pump will run at 600 mL/min. No error or alarm will be generated. For more information on shear rates, and conversion to feed flow rate for a hollow fiber, refer to the Hollow fiber operating guide.

7 Create product steps using the Method Wizard

7.1 Ultrafiltration

7.1.4 Concentration step dialog

Step	Action				
2	Enter the desire	d TMP con	trol value in bar.		
	Feed Control Feed flow	Feed Flo 50	w 🗸 🗸		
	ТМР	1.0	bar (0.0-5.2 bar)		

Note:

For ultrafilter hollow fibers and flat sheet cassettes, the only filtration control mode available is TMP control. This can be edited to permeate flux control in the **Text Editor** after the method has been created.

Note:

When using TMP as the filtration control mode in a method, always choose a TMP value in the product steps that is below the TMP limit. Otherwise, the TMP limit can lead to a TMP pressure alarm, which will pause the run.

Concentration endpoint

There are two ways to end a concentration step:

- Watch for Endpoint
- Retentate Volume/Concentration Factor

To place a watch on the UV to end the concentration step, use the following procedure:

Step	Action					
2	Enter an endpoint value in the <i>Level</i> window. UNICORN will end the con- centration step based on the specified UV signal (in mAU) in the permeate.					
	Note:					
	If the Watch for Endpoint setting is used, a maximum endpoint must still be designated. UNICORN will end the concentration step when either the UV level or maximum endpoint is met.					
3	Set a maximur	n endpoint value for	either Retentate Volume or Concen			
		Endpoint Watch for Endpoint Level	UV Greater than			
		Max Endpoint ⊚ Retentate Volume				
	tration Facto	 Concentration Factor 	7 10 (0-50)			
Step	Action					
1	Set the Watch	for Endpoint optior	on to OFF .			

2 Under Max endpoint, select either Retentate Volume or Concentration Factor.

- 7 Create product steps using the Method Wizard
- 7.1 Ultrafiltration

7.1.4 Concentration step dialog

Step	Action	
3	Enter the value for the endpoint:	
	a. If a Retentate Volume is the desired endpoint, an applicable range will	
	be given which depends on the total retentate hold-up volume, the fill	

Retentate Volume	50	ml (24-214 ml)
Concentration Factor		

volume, and the reservoir size.

Note:

It is not possible to end a concentration step on a volume greater than the fill volume plus the hold-up volume minus 5 mL. There is also a minimum retentate volume equal to the retentate hold-up volume plus 5 mL. This makes sure that a small amount of liquid remains in the reservoir at the end of the concentration step.

b. If a *Concentration Factor* is the desired endpoint, a concentration factor between 1 and 50 must be entered.

Note:

The expected sample volume and concentration factor must be estimated to make sure that they are achievable with the reservoir volume and retentate hold-up volume. For example, if you have an expected sample volume of 1000 mL, and are using the small reservoir, it is not possible to achieve a concentration factor of 2. The system will however not give an error message or alarm, but will end the concentration when the sample load reaches twice the fill volume plus the hold-up volume. Also, you may not be able to reach a desired concentration factor due to system minimum working volume limitation. For example, if the retentate holdup volume is 25 mL, the sample volume is 100 mL, and the desired concentration factor is 5, the system's catastrophic ReservoirEmpty alarm will pause the system when the level sensor detects an empty reservoir at 25 mL. It is recommended to use a minimum reservoir volume of 5 mL, although more may be required depending on crossflow rate.

Note:

A concentration factor of 1 means no concentration, which can be used to compensate for an initial dilution due to liquid in the recirculation loop on the retentate side. This can be utilized in the diafiltration of small volumes as a planned single step. See Diafiltration, on page 127.

7 Create product steps using the Method Wizard 7.1 Ultrafiltration 7.1.5 Diafiltration step dialog

7.1.5 Diafiltration step dialog

If diafiltration of a small volume is planned, it is recommended to perform a concentration as an initial step. This is to avoid dilution of the sample due to the hold-up volume on the retentate side. Note also the sample volume limitation when performing a diafiltration as a first step. For more information, see *Diafiltration, on page 127* and *Concentration endpoint, on page 134*.

Preproduct Steps	Feed Control	Feed Flo	ow	•
Product Steps	Feed flow	0	ml/min (0-600 ml/min)	
Step 1				
Recovery	ControlMode	TMP	-	•
Postproduct Steps	TMP	0.0	bar (0.0-5.2 bar)	
Summary				
	Endpoint			_
	Watch for Endpoint	OFF		•
	Permeste Volume	24		
	DE Euskanas Eastas	2.7	ml (20-9999 ml)	

Feed and filtration control

See Feed and filtration control, on page 133.

Diafiltration endpoint

There are two ways to end a diafiltration step:

- Watch for Endpoint
- Permeate Volume/Diafiltration Exchange Factor

7 Create product steps using the Method Wizard

7.1 Ultrafiltration

7.1.5 Diafiltration step dialog

Three signals can be monitored to end a diafiltration step:

- conductivity
- pH
- UV
- **Note:** A maximum volume endpoint must be set using the **Max Endpoint** setting even if a **Watch for Endpoint** condition has been set. UNICORN will end the concentration step when either the monitor condition or maximum endpoint condition is met.

Watch for endpoint

To place a watch to end the diafiltration step, use the following procedure:

Step	Action			
1	In the Watch for Endpoint drop-down menu, select the signal and condi- tion from the following options:			
	a. Conductivity Greater than and Stable Conductivity			
	b. Conductivity Less than and Stable Conductivity			
	c. pH Geater than and Stable pH			
	d. pH Less than and Stable pH			
	e. UV Greater than			
	f. UV Less than			
	Endpoint Watch for Endpoint OFF Cond Greater than and Stable Cond			
	Permeate Volume OFF OFF OFF OFF OFF OFF			

pH Less than and Stable pH UV Greater than UV Less than

Either:

2

OF Exchange Factor

If UV endpoint has been selected, enter the monitor signal level at which the diafiltration step should stop,

or

If conductivity or pH endpoint has been selected, enter the monitor signal level at which the monitoring of the stable signal should start.

Step	Action				
3	Enter the time the signal should be stable for the watch to be met (conduc- tivity or pH).				
4	Enter Delta Base , the allowed fluctuation (+ and – value) for the signal to be considered stable (conductivity or pH).				
	Endpoint				
	Watch for Endpoint	Cond Les	s than and Stable Cond 🔹 🔻		
	Level	5	mS/cm (0-999 mS/cm)		
	Time Stable	1	min (0-9999 min)		
	Delta Base	0.5	mS/cm (0-999 mS/cm)		
	Max Endpoint				
	Permeate Volume				
	OF Exchange Factor	7	(0-50)		

Note: To end the diafiltration with a watch on pH, or UV signal, a maximum volume endpoint must still be designated. UNICORN will end the concentration step when either the monitor condition or maximum endpoint condition is met.

Permeate Volume/Diafiltration Exchange Factor

To end the diafiltration step based on either a permeate volume or a diafiltration exchange factor:

Step	Action
1	Set the Watch for Endpoint option to OFF .
2	Select either Permeate Volume or DF Exchange Factor .

- 7 Create product steps using the Method Wizard
- 7.1 Ultrafiltration
- 7.1.5 Diafiltration step dialog

Step	Action				
3	Enter the value for the endpoint:				
	If a Permeate Volume is the desired endpoint, enter the total perme- ate volume to end the diafiltration.				
	 ● Permeate Volume 500 ml (20-9999 ml) ● DF Exchange Factor 				
	b. If a Diafiltration Factor is the desired endpoint, a value between 0 and				
	Permeate Volume				
	 DF Exchange Factor T (0-50) 				
Note:	Due to possible unknown sample volume when loading based on air detec- tion, UNICORN cannot estimate the required volume of diafiltration buffer.				

tion, UNICORN cannot estimate the required volume of diafiltration buffer. Make an approximate calculation to make sure that there is enough diafiltration buffer to achieve the desired diafiltration exchange factor. If the system runs out of diafiltration buffer, the sample will concentrate until the catastrophic **Reservoir Empty** alarm pauses the system.

7.1.6 Recovery dialog

Recovery options

There are two recovery options: *Recovery* or *No Recovery*.

If **No Recovery** is selected, the system will go into a **Hold** with a retentate flow rate of 10 mL/min to avoid sedimentation. The material can be recovered manually either during this **Hold** step, or select **Continue** in **System Control** to end the method. The sample can then be recovered as desired.

Note:	If you opt for No Recovery then no postproduct steps are allowed
-------	---

Recovery		
Recovery Option	No Recovery	
Note: No Postproduct steps are allowed when No Recovery is selected.		
The system will go into a Hold with a Retentate Flow of 10 ml/min until		
the method is ended by pressing Continue. Product can then be		
manually recovered.		

If **Recovery** is selected, the reservoir can be emptied by the following ways. For flat sheet casettes, the reservoir is emptied through **R-VB-Out3**.

For hollow fibers, under **Retentate Oulet** select either:

- ProductFlush: the initial recovery is collected through R-VB-Out3 or
- Waste: the retentate is sent to waste through R-VB-Out2

If **Waste** is chosen, the product steps are terminated after an optional 5-minute recirculation with open TMP valve.

- 7 Create product steps using the Method Wizard
- 7.1 Ultrafiltration
- 7.1.6 Recovery dialog

	Recovery	
Basic Settings	Recovery Option	Recovery
Product Steps		
Step 1	Initial recovery colleg	cted through R-VB-Out3 (including empty reservoir
Step 2	and buffer chase of p	product in retentate tubing)
Recovery		
Summary	V Recirculation befo	re initial recovery (with no TMP)
	🔽 Buffer flushes coll	lected through R-VB-Out1
	Number of Buffe	r Flushes
	02	
	Volume Fluch 1	15.9 ml (15.9-350 ml)
	Recirculation t	before flush recovery
	/	
< Back	Next > Finish	Cancel Help Set Default

If **Recirculation before initial recovery (with no TMP)** is checked, the retentate is recirculated with an open **R-PCV** (TMP) valve for 5 minutes, to aid in the recovery process. This recirculation sweeps any proteins bound to the membrane (concentration polarisation) or gel layer that formed during the concentration and diafiltration process back into the bulk flow to enhance the yield. The retentate is then recovered through **R-VB-Out3**, followed by a buffer chase This allows recovery of the undiluted product in the reservoir and 70% of the undiluted material in the recirculation pathway to the **R-VB-Out3** port. The buffer used in the chase is either conditioning buffer (**T-VB-In2**) when no diafiltration step has been included, or diafiltration buffer (**T-VB-In3** or **T-VB-In4**, according to the last diafiltration step before recovery).

Buffer flush after recovery

If the retentate is recovered, this can be followed by a defined number of flushes. The retaining product will be emptied through R-VB-Out1. To do this, use the following procedure:

Step	Action			
1	Check the Buffer flushes collected through R-VB-Out1 box.			
2	Select number of flushes. Up to two flushes can be selected.			
3	Enter the volume for each flush.			
	Recovery			
	Recovery Option			
	Initial recovery collected through R-VB-Out3 (including empty reservoir			
	Recirculation before initial recovery (with no TMP)			
	 Buffer flushes collected through R-VB-Out1 Number of Buffer Flushes 1 2 Volume Flush 1 15.9 ml (15.9-350 ml) Vecirculation before flush recovery 			

Note:

The minimum flush volume represents the buffer volume that is present in the recirculation loop after the buffer chase for primary recovery, and depends on the hold-up volume of the system.

To perform recirculation, select the *Recirculation before recovery* option.

Recirculation can also be performed between buffer flushes.

Note:

The product will leave the system through **R-VB-Out3** and the flush volumes will leave through R-VB-Out1.

4

7 Create product steps using the Method Wizard

7.2 Microfiltration

7.2 Microfiltration

About this section

This section provides information on how to create product methods for Microfiltration using the *Method Wizard*.

In this section

Section		See page
7.2.1	Introduction	145
7.2.2	Basic settings dialog	146
7.2.3	Product steps dialog	147
7.2.4	Concentration step dialog	150
7.2.5	Diafiltration step dialog	155
7.2.6	Recovery dialog	159
7.2.1 Introduction

Depending on the application, the product of interest will either stay in the retentate or pass through the filter to the permeate side.

Cell harvesting/washing

In cell harvesting and cell washing, the product of interest (the cells) will stay in the retentate.

- A concentration step reduces the volume of the cell solution.
- A diafiltration step is run to wash the harvested cells.

Cell or lysate clarification

After cell harvesting, mechanical disruption of the cells releases the product of interest from the cells and creates a lysate.

In a concentration step, cells, cell debris or other insoluble matter are retained by the filter and the target product passes through the filter to the permeate.

Note: In this step, the product leaves the system through **P-VB-Out2**.

A diafiltration step is then performed to flush the rest of the product of interest through the membrane.

Note: In this step, the product leaves the system through **P-VB-Out3**.

7 Create product steps using the Method Wizard

7.2 Microfiltration

7.2.2 Basic settings dialog

7.2.2 Basic settings dialog

Input the basic settings (filter type, specifications, tubing kit i.d., and size of reservoir) as detailed in *Section 6.3.1 Basic settings dialog, on page 100.*

Select **Product** in the **Steps** selection.

Steps	
📄 Preproduct 📝 Pro	duct 📄 Postproduct

7 Create product steps using the Method Wizard 7.2 Microfiltration 7.2.3 Product steps dialog

7.2.3 Product steps dialog

	Product Steps	
Basic Settings	Number of Steps	1 -
Product Steps		
Step 1	Step 1	 Concentration Diafiltration
Recovery		
Summary	Sample loading	erminate sample fill
	Sample Volume	0 ml (0-80000 ml)
	Note:	
	-If sample volume is larg	er than the size of the reservoir, specify the
	reservoir fill volume on	the next page to start the concentration.
	-Recommended minimum	working volume is 23 ml.

The image below shows the **Product Steps** dialog window.

A minimum working volume is displayed. The minimum working volume is the system hold-up volume including the filter hold-up, with an addition of a small volume in the reservoir. This volume depends on the reservoir size, tubing kit, and filter volume. This is the lowest working volume that is recommended.

Note: Minimum working volume will vary with reservoir size and tubing kit used and is not the same as system hold-up volume. To maintain smooth processing, a small volume is added to the system hold-up volume in the calculation of minimum working volume. For information on system hold-up volume, see the Appendix A.

- 7 Create product steps using the Method Wizard
- 7.2 Microfiltration
- 7.2.3 Product steps dialog

To enter information in to the **Product Steps** dialog, use the following procedure:

Step	Actio	n		
1	In the Product Steps dialog, select up to 3 concentration and diafiltra			
		Product Steps		
		Number of Steps		
	steps.	Step 1	2 Concentration © Diafiltration	

Note:

For diafiltration, only 2 steps can be selected with any combination of steps. This is due to the limited number of transfer valve block inlets that are used as standard for diafiltration buffer.

Number of Steps	3 🔹	
Step 1 Step 2 Step 3	 Concentration Concentration Concentration 	 Diafiltration Diafiltration Diafiltration

Step Action

- 2 Enter the sample volume. There are 3 options:
 - a. Enter a set volume.

Note:

If a volume greater than the maximum volume of the chosen reservoir is entered, on the next page you will be required to enter a **Fill Volume** and the system will operate in **Fed Batch** mode. In this case, the reservoir is continually refilled as a function of the permeate flow. This is possible when only concentration is the first step. Otherwise, if the total sample volume fits into the chosen reservoir size, the system will operate in

	Sample loading	o terminate	sample fill
Tank Batch mode.	Sample Volume	300	ml (0-80000 ml)

b. Enter a set volume and check **Use air sensor to terminate sample fill**. This will activate the air sensor found on **T-VB-In1**. if air is detected before the sample volume is reached, the air sensor terminates the sample load, but if no air is detected before the sample volume is reached, the sample volume is reached, the sample volume terminates the load.

c. Check Use air sensor to terminate sample fill but leave the sample volume on the default of 80 000 mL. In this case, only air detection on T-VB-In1 will terminate the sample load.

7 Create product steps using the Method Wizard

7.2 Microfiltration

7.2.4 Concentration step dialog

7.2.4 Concentration step dialog

	Step 1 Concentration			
Basic Settings	Reservoir fill volume	200	ml (5-350 ml)	
Preproduct Steps	to start concentration			
Product Steps				
Step 1	Feed Control	Feed Flow	N	•
Recovery	Feed flow	0	ml/min (0-600 ml/min)	
Postproduct Steps				
Summary	ControlMode	TMP	1.	•
	ТМР	0.0	bar (0.0-5.2 bar)	
	Endpoint			
	Watch for Endpoint	OFF		•
	Retentate Volume	24	ml (24-214 ml)	
	Concentration Factor			
(1///				
< Back Ne	xt > Finish	Can	cel Help	Set Default

If a sample volume greater than the chosen reservoir volume has been selected for fed batch operation, or if the **Use air sensor to terminate sample fill** option has been selected, a reservoir fill volume must first be entered. The default fill volume is 200 mL for either reservoir but the maximum fill volume will depend on the size of the reservoir chosen. A reservoir minimum is also displayed; this is the minimum recommended working volume for the reservoir (5 mL for the small reservoir, 8 mL for the

	Step 1 Concentration		
	Reservoir fill volume	200	ml (5-350 ml)
ervoir).	to start concentration		

large reservoir).

Feed and filtration control

There are four ways to create the crossflow, all controlled by the feed pump:

- constant **DeltaP**
- constant Feed Flow
- constant Retentate Flow
- **Shear** rate (only with hollow fibers)

Feed Control	Shear 👻
Shear	Delta P Feed Flow
ControlModo	Retentate How Shear TMP
TMP	0.0 bar (0.0-5.2 bar)

To set the feed control settings, use the following procedure.

Step Action

1

Enter the value for the selected crossflow rate, for example a **Shear** of 6000 s^{-1} .

Note:

When using shear rate as crossflow rate for hollow fibers, the feed flow rate that equals a chosen shear rate must be calculated in advance; the maximum feed flow rate on the system is 600 mL/min, and if a shear rate for the selected hollow fiber exceeds this, the feed pump will run at 600 mL/min. No error or alarm will be generated. For more information on shear rates, and conversion to feed flow rate for a hollow fiber, refer to the Hollow Fiber Operating Guide.

2 From the **ControlMode** drop down menu, select one of two available filtration control modes: **TMP** control or permeate **flux** control.

Note:

Permeate flux control is recommended for any pore size over 0.1 μ m, to prevent rapid blocking of the membrane. Low TMP control can often be used for high molecular weight ultrafilters (such as 500 or 750 kD NMWCO).

Feed Control	Shear 👻		
Shear	6000	sec-1 (0-20000 sec-1)	
ControlMode	TMP	•	
тмр	Flux TMP		

7 Create product steps using the Method Wizard

7.2 Microfiltration

7.2.4 Concentration step dialog

Step	Action	
3	Enter the desire	ed flux control value in LMH or TMP control value in bar.
	Feed Control Shear	Shear • 6000 sec-1 (0-20000 sec-1)
	Control Mode Flux	Flux 20 LMH (0-4800 LMH)
	Note:	

When using TMP as the filtration control mode in a method, always choose a TMP value in the product steps that is below the TMP limit. Otherwise, the TMP limit may lead to a TMP pressure alarm, which will pause the run.

Concentration endpoint

There are two ways to end a concentration step:

• Watch for Endpoint

• Retentate Volume/Concentration Factor

To place a watch on the UV to end the concentration step, use the following procedure:

Step	Action	
1	Select UV Greater than or U	V Less than from the drop-down list.
	Endpoint Watch for Endpoint	OFF -
		OFF UV Greater than
	Retentate Volume	UV Less than
	Concentration Factor	

Step	Action			
2	Enter an endpoi centration step	nt value in the Leve based on the specif	l windov ied UV si	v. UNICORN will end the con- ignal (in mAU) in the permeate.
	Note:			
	If the Watch for be designated. U level or maximu	• Endpoint setting is INICORN will end th m endpoint conditio	s used, a e concer on is met.	maximum endpoint must still tration step when either the UV
3	Set a maximum	endpoint value for e	either Re	etentate Volume or Concen-
		Endpoint Watch for Endpoint Level	UV Greate 200	r than
		Max Endpoint Retentate Volume		
	tration Factor.	 Concentration Factor 	10	(0-50)
Step	Action			
1	Set the Watch (for Endpoint optior	n to OFF .	

2 Select either **Retentate Volume** or **Concentration Factor** under **Max** endpoint.

- 7 Create product steps using the Method Wizard
- 7.2 Microfiltration

7.2.4 Concentration step dialog

Step	Action
3	Enter the value for the endpoint:
	a. If a <i>Retentate Volume</i> is the desired endpoint, an applicable range will be given which depends on the total retentate hold-up volume, the fill volume, and the reservoir size.

Note:

It is not possible to end a concentration on a volume less than the fill volume plus the hold-up volume minus 5 mL. There is also a minimum retentate volume equal to the retentate hold-up volume plus 5 mL. This makes sure that a small amount of liquid remains in the reservoir at the end of the concentration step.

b. If a *Concentration Factor* is the desired endpoint, a concentration factor between 1 and 50 must be entered.

Note:

The expected sample volume and concentration factor must be estimated to make sure that they are achievable with the reservoir volume and retentate hold-up volume. For example, if you have an expected sample volume of 1000 mL, and are using the small reservoir, it is not possible to achieve a concentration factor of 2. The system will however not give an error message or alarm, but will end the concentration when the sample load reaches twice the fill volume plus the hold-up volume. Also, you may not be able to reach a desired concentration factor due to system minimum working volume limitation. For example, if the retentate holdup volume is 25 mL, the sample volume is 100 mL, and the desired concentration factor is 5, the system's catastrophic **ReservoirEmpty** alarm will pause the system when the level sensor detects an empty reservoir at 25 mL. It is recommended to use a minimum reservoir volume of 5 mL, although more may be required depending on crossflow rate.

Note:

A concentration factor of 1 means no concentration, which can be used to compensate for an initial dilution due to liquid in the recirculation loop on the retentate side. This can be utilized in the diafiltration of small volumes as a planned single step. See Diafiltration, on page 127.

7 Create product steps using the Method Wizard 7.2 Microfiltration 7.2.5 Diafiltration step dialog

7.2.5 Diafiltration step dialog

If diafiltration of a small volume is planned, it is recommended to perform a concentration as an initial step. This is to avoid dilution of the sample due to the hold-up volume on the retentate side. Note also the sample volume limitation when performing a diafiltration as a first step. For more information, see *Diafiltration, on page 127* and *Concentration endpoint, on page 134*.

	Step 1 Diafiltration			
Basic Settings				
Preproduct Steps	Feed Control	Feed Flo	w	•
Product Steps	Feed flow	0	ml/min (0-600 ml/min)	
Step 1				
Recovery	ControlMode	TMP		_
Postproduct Steps	TMP	0.0	bar (0.0-5.2 bar)	
Summary				
	Endpoint			
	Watch for Endpoint	OFF		•
		-		
	Permeate Volume	24	ml (20-9999 ml)	
	OF Exchange Factor			
11/1				
MICH	1			
	4			
the second s				

Feed and filtration control

See, Section 7.2.4 Concentration step dialog, on page 150.

Diafiltration endpoint

There are two ways to end a diafiltration step:

7 Create product steps using the Method Wizard

7.2 Microfiltration

7.2.5 Diafiltration step dialog

• Watch for Endpoint

• Permeate Volume/Diafiltration Exchange Factor

Three signals can be monitored to end a diafiltration step:

- conductivity
- pH
- UV

Note: A maximum volume endpoint must be set using the **Max Endpoint** setting even if a **Watch for Endpoint** condition has been set. UNICORN will end the concentration step when either the monitor condition or maximum endpoint condition is met.

Watch for endpoint

To place a watch to end the diafiltration step, use the following procedure:

Step	Action				
1	In the Watch for Endpoint drop-down menu, select the signal and condi- tion from the following options:				
	a. Conductivity Greater than and Stable Conductivity				
	b. Conductivity Less than and Stable Conductivity				
	c. pH Geater than and Stable pH				
	d. pH Less than and Stable pH				
	e. UV Greater than				
	f. UV Less than				
	Endpoint Watch for Endpoint ● Permeate Volume ● DF Exchange Factor ● DF Exchange Factor				
2	Enter the Level at which the monitoring of the stable signal should start.				

3 Enter the *Time Stable*, the time the signal should be stable for the signal watch to be met (conductivity or pH).

Step	Action			
4	Enter Delta Base , t be considered stab	the allow lle.	ved fluctuation (+ and –	value) for the signal to
	Endpoint Watch for Endpoint Level Time Stable Delta Base	Cond Les 5 1 0.5	s than and Stable Cond mS/cm (0-999 mS/cm) min (0-9999 min) mS/cm (0-999 mS/cm)	
	Max Endpoint Permeate Volume DF Exchange Factor	7	(0-50)	

Note: To end the diafiltration with a watch on the conductivity, pH, or UV signal, a maximum volume endpoint must still be designated. UNICORN will end the diafiltration step when either the monitor condition or maximum endpoint condition is met.

Permeate Volume/Diafiltration Exchange Factor

To end the diafiltration step based on either a permeate volume or a diafiltration exchange factor, use the following procedure:

Step	Action		
1	If Permeate Volume of DF Exchange Factor is to be the only endpoint then the Watch for Endpoint option must be set to OFF .		
2	Select either Permeate Volume or DF Exchange Factor and enter the endpoint value.		
	 Permeate Volume DF Exchange Factor 		
Note:	If a Diafiltration Exchange Factor is selected, a concentration factor be- tween 1 and 50 must be entered.		
	 Permeate Volume DF Exchange Factor (0-50) 		

- 7 Create product steps using the Method Wizard
- 7.2 Microfiltration
- 7.2.5 Diafiltration step dialog
 - **Note:** Due to possible unknown sample volume when loading based on air detection, UNICORN cannot estimate the required volume of diafiltration buffer. Make an approximate calculation to ensure that there is enough diafiltration buffer to achieve the desired diafiltration exchange factor. If the system runs out of diafiltration buffer, the sample will concentrate until the catastrophic **Reservoir Empty** alarm pauses the system.

7.2.6 Recovery dialog

Recovery options

There are two options, *Recovery* or *No Recovery*.

If **No Recovery** is selected, the system will go into a **Hold** with a retentate flow rate of 10 mL/min to avoid sedimentation. The material can either be recovered manually from the reservoir during the **Hold**, or select **Continue in System Control** to end the method, allowing for manual recovery as desired.

Recovery	
Recovery Option No Rec	overy 🔻

Note: No Postproduct steps are allowed when No Recovery is selected. The system will go into a Hold with a Retentate Flow of 10 ml/min until the method is ended by pressing Continue. Product can then be manually recovered.

Note: If you opt for No Recovery, no postproduct steps are allowed

Note: If an old type retentate valve is used on the system, be careful that any recovery vessels are not placed lower than the reservoir, as siphoning can occur.

If **Recovery** is selected, the reservoir can be emptied by the following ways.

For flat sheet casettes, the reservoir is emptied through **R-VB-Out3**.

For hollow fibers, under **Retentate Oulet** select either:

- ProductFlush: the initial recovery is collected through R-VB-Out3 or
- Waste: the retentate is sent to waste through R-VB-Out2

- 7 Create product steps using the Method Wizard
- 7.2 Microfiltration
- 7.2.6 Recovery dialog

Recovery Option Retentate Outlet	Recovery	•]
Retentate Outlet			
Product/Elush			
FroducoFlush	waste		
The system will flush the	e retentate to waste (R	-VB-Out2)	
Recirculation before i	nitial recovery (with no	o TMP)	
	The system will flush the	The system will flush the retentate to waste (R	The system will flush the retentate to waste (R-VB-Out2)

Note: For clarification processes, the target product passes through the filter to the permeate. The retentate can be directed to waste. If waste is chosen, the product steps are terminated after an optional 5-minute recirculation with open TMP valve.

If recovering the retentate with hollow fibers, select **Product/Flush**.

7 Create product steps using the Method Wizard 7.2 Microfiltration 7.2.6 Recovery dialog

Basic Settings	Becovery T
Preproduct Steps	Recovery Option
Product Steps	Retentate Outlet
Step 1	Product/Flush
Recovery	
Postproduct Steps	Initial recovery collected through R-VB-Out3 (including empty reservoir
Summary	and buffer chase of product in retentate tubing)
	Recirculation before initial recovery (with no TMP)
	☑ Buffer flushes collected through R-VB-Out1
	Number of Buffer Flushes
	© 2
	Volume Flush 1 16.9 ml (16.9-350 ml)
	Recirculation before flush recovery
	-
< Back	Next > Finish Cancel Help Set Defa

If **Recirculation before initial recovery (with no TMP)** is checked, the retentate is recirculated with an open **R-PCV** (TMP) valve for 5 minutes, to aid in the recovery process. This recirculation sweeps any proteins bound to the membrane (concentration polarisation) or gel layer that formed during the concentration and diafiltration process back into the bulk flow to enhance the yield. The retentate is then recovered through **R-VB-Out3**, followed by a buffer chase This allows recovery of the undiluted product in the reservoir and 70% of the undiluted material in the recirculation pathway to the **R-VB-Out3** port. The buffer used in the chase is either conditioning buffer (**T-VB-In2**) when no diafiltration step has been included, or diafiltration buffer (**T-VB-In3** or **T-VB-In4**), according to the last diafiltration step before recovery.

7 Create product steps using the Method Wizard

7.2 Microfiltration

7.2.6 Recovery dialog

Buffer flush after recovery

If the retentate is recovered, this can be followed by a defined number of flushes and the retaining product will be emptied through **R-VB-Out1**. To do this, use the following procedure:

Step	Action				
1	Check the Buffer flushes collected through R-VB-Out1 box.				
2	Select number of flushes. Up to two flushes can be selected.				
3	Enter the volume for each flush.				
	Recovery				
	Recovery Option Recovery				
	Initial recovery collected through R-VB-Out3 (including empty reservoir				
	and buffer chase of product in retentate tubing)				
	Recirculation before initial recovery (with no TMP)				
	 Buffer flushes collected through R-VB-Out1 Number of Buffer Flushes 1 				
© 2					
	Volume Flush 1 15.9 ml (15.9-350 ml) Recirculation before flush recovery				

Note:

The minimum flush volume represents the buffer volume that is present in the recirculation loop after the buffer chase for primary recovery, and depends on the hold-up volume of the system.

4

To perform recirculation, select the *Recirculation before recovery* option.

Recirculation can also be performed between buffer flushes.

Note:

The product will leave the system through **R-VB-Out3** and the flush volumes will leave through **R-VB-Out1**.

7.3 Visualization of product steps

For information on the specific instructions, for example **Constant Retentate Volume**, see Chapter 14 Strategy instructions, on page 268.

Sample filling

Sample filling, either **Tank Batch** (sample fill) or **Fed Batch** (reservoir fill) must take place before a concentration or diafiltration step.

Stage	Description
1	To prime the sample inlet tubing, the transfer pump first fills the tubing
	with 6 mL sample from T-VB-In1 (sample).

2 To prime the tubing from the transfer pump to the transfer purge valve waste line, an additional 10 mL sample is filled into the tubing. Only the initial 6 mL priming volume goes to waste.

7.3 Visualization of product steps

Stage Description

3 The **Transfer_Purge_Valve** is switched to **Reservoir** to fill with sample. The volume which is initially filled depends on whether a **Tank Batch** or **Fed Batch** process is used. With a **Tank Batch**, the total sample volume minus 30 mL is filled at a high flow rate, followed by an additional 20 mL at a slow flow rate (to improve accuracy). This is followed by the buffer chase detailed below, to bring in the remaining 10 mL sample contained within the tubing to the reservoir.

4

The last 10 mL of the sample is chased with buffer (either conditioning or diafiltration buffer, depending on the product steps) to the reservoir.

5 If the **Use air sensor to terminate sample fill** has been selected, the air sensor is activated during the sample load. If air is detected, the sample load is terminated early and the system moves to the next step.

Stage Description

6

The sample is recirculated at the chosen crossflow rate until the deltaP has stabilized for at least 1 minute, with a timeout after 5 minutes.

7 The appropriate permeate outlet is opened (**P-VB-Out2** for a concentration step or **P-VB-Out3** for a diafiltration step) and the filtration control mode is started.

8 To prime the sample inlet tubing, the transfer pump first fills the tubing with 6 mL sample from **T-VB-In1** (sample).

7.3 Visualization of product steps

9

Stage Description

To prime the tubing from the transfer pump to the transfer purge valve waste line, an additional 10 mL sample is filled into the tubing. Only the initial 6 mL priming volume goes to waste.

10 With a **Fed Batch** process, the initial **Reservoir fill volume** minus 20 mL is filled at a high flow rate, followed by an additional 20 mL at a slow flow rate. The sample load will finish at the end of the **Fed Batch** with the buffer chase detailed below, to bring in the 10 mL sample contained within the tubing to the reservoir.

Stage Description

11 **Constant retentate volume** is activated. The selected crossflow is set, the permeate **P-VB-Out2** is opened, and the filtration control mode is started.

12 A watch is put on the **TransVol** for the total sample volume minus 10 mL. When this is reached, the last 10 mL of the sample is chased with buffer (either conditioning or diafiltration buffer, depending on the product steps) to the reservoir.

- 13 If the **Use air sensor to terminate sample fill** has been selected, the air sensor is activated during the sample load. If air is detected, the sample load is terminated early and the system moves to the next step.
- 14 The same principle is used with **Use air sensor to terminate sample fill** and unlimited sample volume; when air is detected, the sample load is terminated and the system moves to the next step.

- 7 Create product steps using the Method Wizard
- 7.3 Visualization of product steps

Concentration

The concentration starts after the sample fill (**Tank Batch**) or reservoir fill (**Fed Batch**) has finished, with the opening of the permeate pathway **P-VB-Out2** and setting of the filtration control mode parameter.

Stage Description

1 The concentration continues, with **P-VB-Out2** open, until the desired end point has been reached (either a specified concentration factor or retentate volume) or the watch on the UV signal has been met.

Diafiltration

The diafiltration starts with a specific sample volume in the reservoir, either the specified end point of the concentration step, or the fill volume in a diafiltration-only method or method in which the diafiltration is the first step.

Stage Description

 Constant Retentate Volume is activated. The transfer valve inlet is opened to either diafiltration buffer 1 or 2 (depending on step) (T-VB-In3 or T-VB-In4) and the permeate pathway is switched to P-VB-Out3. The crossflow rate and filtration control mode remain active or are changed (if specified in the method).

2 Liquid leaving the system through **P-VB-Out3** is replaced with diafiltration buffer through **T-VB-In3** until the desired end point has been reached (diafiltration exchange factor or permeate volume) or a watch on the conductivity, pH, or UV signal has been met. If two diafiltration steps are performed, the second step will use buffer from **T-VB-In4**.

Recovery, no flush

Product recovery without flush recovers cells from the ÄKTAcrossflow system.

7.3 Visualization of product steps

Stage Description

1 At the end of the final product step, the permeate pathway is closed and the filtration control mode de-activated. If **Recirculation before** *initial recovery* has been selected, the system will recirculate (using the same crossflow rate used in the last product step) for 5 minutes.

2 To start the recovery, the reservoir is emptied through **R-VB-Out3**.

Stage Description

3 The reservoir is then filled with 5 mL buffer (either conditioning from T-VB-In2, or diafiltration buffer from T-VB-In3 or T-VB-In4, depending on the product steps chosen).

4 At a transfer and retentate flow rate of 5 mL/min, buffer in the reservoir is used to chase 70% of the undiluted product in the pathway between the reservoir and **R-VB-Out3** out through **R-VB-Out3**, adding to the undiluted product recovered in the initial emptying of the reservoir.

Recovery, with buffer flushes

The **Recovery** with buffer flushes removes residual product from system without risking precipitation of components on the membrane or flow path before product recovery.

7.3 Visualization of product steps

3

Stage	Description
1	At the end of the final product step, the permeate pathway is closed and the filtration control mode de-activated. If Recirculation before <i>initial recovery</i> has been selected, the system will recirculate (using the same crossflow rate used in the last product step) for 5 minutes.

2 To start the recovery, the reservoir is emptied through **R-VB-Out3**.

The reservoir is filled with the volume of buffer specified in **Volume Flush 1** in the **Recovery** dialog. This buffer is either conditioning buffer from **T-VB-In2**, if no diafiltration step was chosen, or diafiltration buffer from **T-VB-In3** or **T-VB-In4**, depending on the last diafiltration step.

Stage Description

4 At a transfer and retentate flow rate of 5 mL/min, buffer in the reservoir is used to chase 70% of the undiluted product in the pathway between the reservoir and **R-VB-Out3** out through **RVB-Out3**, adding to the undiluted product recovered in the initial emptying of the reservoir.

R-VB-Out3 is closed and the retentate valve block is set to **R-VB-Recy**cle. If *Recirculate before flush recovery* has been selected, the retentate is recirculated for five minutes at the same crossflow rate chosen for the last product step.

6

5

R-VB-Out1 is then opened, and the reservoir is emptied.

7.3 Visualization of product steps

Stage Description

7 If a second buffer flush has been selected, the reservoir is then filled with the volume of buffer specified in *Volume Flush 2* in the *Recovery* dialog. This buffer is either conditioning buffer from **T-VB-In2**, if no diafiltration step was chosen, or diafiltration buffer from **T-VB-In3** or **T-VB-In4**, depending on the last diafiltration step.

8 At a transfer and retentate flow rate of 5 mL/min, buffer in the reservoir is used to chase 70% of the dilute product in the pathway between the reservoir and **R-VB-Out1** out through **R-VB-Out1**, adding to the first flush recovered in the emptying of the reservoir out **R-VB-Out1**.

Stage Description

9 R-VB-Out3 is closed and the retentate valve block is set to recycle. If Recirculate before flush recovery has been selected, the retentate is recirculated for five minutes at the same crossflow rate chosen for the last product step.Result: R-VB-Out1 is then opened, and the reservoir is emptied.

- 10 At a transfer and retentate flow rate of 5 mL/min, buffer in the reservoir is used to chase 70% of the dilute product in the pathway between the reservoir and **R-VB-Out1** out through **R-VB-Out1**, adding to the dilute product recovered in the initial emptying of the reservoir out **RVB-Out1**.
- 11 The rest of the reservoir volume is emptied through waste (**R-VB-Out2**).

8 Create postproduct steps using the Method Wizard

About this chapter

This chapter describes the preproduct steps and how to create them in the **Method Wizard**.

In this chapter

Section		See page
8.1	Introduction	177
8.2	Postproduct steps: Description	178
8.3	Postproduct steps: Method Wizard dialogs	182

8.1 Introduction

The ÄKTAcrossflow Method Wizard enables the simple creation of a series of steps to be used after a process run. These steps include:

- Flush
- Clean-in-place
- Water Flush
- Water Flux Test
- Filter Storage
- **Note:** A recommended storage solution for the system is 20% ethanol. The system should not be stored in NaOH, as the pump seals are affected over time.
- **Note:** To completely exchange the solution in the system, perform the **System Sanitization** method and use 20% ethanol instead of NaOH. It is important to use a three-way-connector instead of a filter. See Section 11.1 System sanitization, on page 218 for more information.
- **Note:** If the system requires more intensive cleaning, it may also be necessary to perform a System Sanitization. See Section 11.1 System sanitization, on page 218.

8 Create postproduct steps using the Method Wizard

8.2 Postproduct steps: Description

8.2 Postproduct steps: Description

Flush

After a product run, this step flushes remaining product and contaminants out of the filter before the CIP step. Select flush solution (either conditioning buffer from **T-VB-In2** or water from **T-VB-In5**). The flush volume is editable with a default value of 2 mL per cm² surface area of the filter. This step will:

- Prime the selected transfer inlet valve position (T-VB-In2 or T-VB-In5) to waste
- Fill the reservoir to the maximum volume (350 mL for the small reservoir and 1100 mL for the large reservoir), then empty the reservoir out **R-VB-Out2**
- Flush the recirculation loop twice and empty the reservoir
- Refill the reservoir to a small volume and flush 2 mL per cm² surface area of the filter out through permeate valve block position 1 (**P-VB-Out1**)
- Empty the reservoir

Filter CIP

The filter CIP postproduct step includes an option to perform two filter CIP procedures with an optional water flush between. This step will:

- Prime the CIP transfer inlet valve positions tubing to waste.
 - **Note:** If CIP 1 only is chosen, only transfer valve block 6 (**T-VB-In6**) is primed. If CIP 2 only is chosen, only transfer valve block 7 (**T-VB-In7**) is primed. If both CIP 1 and CIP 2 are selected, both inlets will be primed.
- Fill the reservoir to the maximum volume (350 mL for the small reservoir and 1100 mL for the large reservoir), then empty the reservoir out **R-VB-Out2**
- Flush the recirculation loop twice and empty the reservoir
- Either fill the reservoir to the maximum volume (small reservoir) or fill to a specified fill volume (large reservoir)
- Rinse 30 mL CIP solution to waste through **P-VB-Out1**
- Recirculate the permeate back into the reservoir for the *Length of Time* specified in the dialog
- Empty the reservoir

Empty the reservoir

If a water flush is chosen between CIP 1 and CIP 2, the system will:

• Prime the transfer inlet valve position 5 (T-VB-In5) tubing to waste

- Add a small volume of water to the reservoir to rinse the retentate loop
- Empty the reservoir
- Refill the reservoir to a small volume and flush 10 mL water out through the permeate valve block position recycle (P-VB-Recycle) to waste (Transfer_Purge_Valve to Waste)
- Empty the reservoir

If CIP 3 is chosen, this step will:

- Prime the transfer inlet valve position 7 (T-VB-In7) tubing to waste
- Add CIP solution to the reservoir to rinse the retentate loop
- Empty the reservoir
- Either fill the reservoir to the maximum volume (small reservoir) or fill to a specified fill volume (large reservoir)
- Rinse 30 mL CIP solution to waste through P-VB-Out1
- Recirculate the permeate back into the reservoir for the *Length of Time* specified in the dialog
- Empty the reservoir
- **Note:** The system will not be sanitized. For sanitization of the system, see Section 11.1 System sanitization, on page 218.
- **Note:** If only a CIP 2 step is chosen, the procedure used by the system will be the same as the CIP 1 step, using transfer inlet position 7 (**T-VB-In7**) instead of transfer inlet position 6 (**T-VB-In6**).

Water flush

The postproduct water flush step will fill the reservoir to the maximum volume (350 mL for the small reservoir and 1100 mL for the large reservoir) and empty, to make sure that any previous solution has been removed. It is always recommended to select a water flush after a filter CIP step where NaOH was used. This step should also be used before a water flux test is performed. The default water flush volume is 2 mL per cm² surface area of the filter and can be edited. This step will:

- Prime the transfer inlet valve position 5 (T-VB-In5) tubing to waste
- Fill the reservoir to maximum volume (350 mL for the small reservoir and 1100 mL for the large reservoir) and empty
- Add a small volume of water to the reservoir to rinse the retentate loop twice
- Empty the reservoir
- Refill the reservoir to a small volume and flush 2 mL water per cm² surface area of the filter out through permeate valve block position 1 (**P-VB-Out1**)

8 Create postproduct steps using the Method Wizard

8.2 Postproduct steps: Description

• Empty the reservoir

Water flux test

A water flux test measures the water permeability of a filter, to control the quality status of the filter. Permeate flux values are often normalized to 1 bar transmembrane pressure and corrected to a temperature of 25°C, and is then called the normalized water permeability (NWP; also called normalized water flux, or NWF). By comparing obtained water fluxes as a function of usage over time, it is possible to assess the efficiency of the filter CIP determine the lifetime of a filter.

It is recommended to perform the test before a product step, and after a product step and filter cleaning.

Always perform a water flush or rinse before a water flux test, to make sure that the filter is thoroughly flushed with water.

The filtration control mode is dependent on the filter type used.

- For flat sheet cassettes, TMP control mode is used. The default TMP value is 1 bar, but this can be edited by the user.
- For ultrafilter hollow fibers, TMP control mode is used. The default TMP value is 1 bar, but this can be edited by the user. It is recommended to set the TMP value to 0.5 bar or lower for high molecular weight hollow fiber ultrafilters (≥ 500 kD).
- For microfilter hollow fibers (cut off larger than 0.1 μm), Normal Flow Filtration (NFF) mode is used. Feed flow or Feed pressure can be selected as a feed control and a value is entered.

This step will:

- Prime the transfer inlet valve position 5 (T-VB-In5) tubing to waste
- Add a small volume of water to the reservoir to rinse the retentate loop
- Empty the reservoir
- Fill a small volume of water to the reservoir
- Set the system to total recycle (**P-VB-Recycle**, **Transfer_Purge_Valve** to **Reservoir**)
- Set the filtration control mode and wait until the flux has stabilized
- Measure the permeate flux and set a **Set_Eval_Mark** with the parameter **Normalized_Water_Flux** for easy analysis in the Evaluation module.

Data from water flux testing can be analyzed in the **Evaluation module** of UNICORN. In the example in *Figure 8.1, on page 181*, normalized water flux results from a series of measurements are plotted against the number of performed runs with a filter. A standardized temperature correction table compensates for temperature effects due to viscosity. Results are compared to previous tests and provide information about the quality status of the filter.
8 Create postproduct steps using the Method Wizard 8.2 Postproduct steps: Description

Figure 8.1: Example of plotted normalized water flux values

Note: When comparing status of a filter as a function of time and number of uses, use the same filtration mode parameter each time the water flux test is run.

Storage

The storage step replaces the liquid in the filter with a buffer that is suitable for storing the filter. This step will:

- Prime the transfer inlet valve position 8 (T-VB-In8) tubing to waste
- Add a small volume of storage solution to the reservoir to rinse the retentate loop
- Empty the reservoir
- Fill a small volume of storage solution to the reservoir
- Flush the filter with the selected volume, through permeate recycle to waste (P-VB-Recycle, transfer purge valve to waste)
- Set the system to total recycle (P-VB-Recycle, Transfer_Purge_Valve to Reservoir) for 5 minutes
- Empty the reservoir
- **Note:** See the filter manufacturer's instructions for suitable filter storage solutions. The system might require flushing after removing the filter to put in a suitable storage solution, such as 20% ethanol. Do not store the ÄKTAcrossflow in NaOH, as the pump seals may be affected.

8 Create postproduct steps using the Method Wizard

8.3 Postproduct steps: Method Wizard dialogs

8.3 Postproduct steps: Method Wizard dialogs

About this section

This section provides information on how to create postproduct steps in the **Method Wizard** when using hollow fibres and flat sheet cassettes, and provides a description of each step.

In this section

Section		See page
8.3.1	Postproduct step dialog	183
8.3.2	Visualization of the postproduct steps	187

8 Create postproduct steps using the Method Wizard 8.3 Postproduct steps: Method Wizard dialogs 8.3.1 Postproduct step dialog

8.3.1 Postproduct step dialog

Postproduct step dialog overview

Input the basic settings (filter type, specifications, tubing kit i.d., and size of reservoir) as detailed in *Section 6.3 Preproduct steps: Method Wizard dialogs, on page 99.* Select **Postproduct** in the **Steps** selection.

Steps Preproduct Product Vertex Postproduct

The image below shows an example of the **Postproduct setup** dialog.

Basic Settings				
Postproduct Steps	V Flush			
Summary	Flush Volume	100		
	 Conditioning t Filter CIP 	Sutter () Water	
	CIP 1			
	Length of Time	60	min (0-9999 min)	
	Length of Time	60	min (0-9999 min)	
	Water Flush b	etween Cl	P	
	📝 Water Flush			
	Water Flush Volume	100]	
	Water Flux Test		7	
	IMP NEE	1	bar (0.01-5.2 bar)	
	Filter Storage Solution	n		
	Storage Volume	30	ml (30-300 ml)	
	-			

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs
- 8.3.1 Postproduct step dialog

Flush

To include a conditioning buffer or water flush in the method, check the **Flush** box. Select the flush volume; this is the volume of solution which will be flushed through the filter into the permeate. The default value is 2 mL per cm² of filter surface area.

Pick the flush solution: conditioning buffer (**T-VB-In2**) or water (**T-VB-In5**).

📝 Flush		
Flush Volume	100	
Conditioning B	uffer	Water

Filter CIP

To include a Filter CIP step, use the following procedure.

Step	Action			
1	Check the Filter CIP	box.		
2	Select either a one- o tween.	or two-st	ep CIP, with an option	nal water flush in be-
3	Enter the desired CIP Filter CIP CIP 1	ocirculat	ion time in the Lengt	h of Time box.
	Length of Time V CIP 2	60	min (0-9999 min)	
	Length of Time Vater Flush be	60 tween CIP	min (0-9999 min)	

Water flush

To include a water flush step, use the following procedure.

- Step Action
- 1 Check the **Water Flush** box.

8 Create postproduct steps using the Method Wizard 8.3 Postproduct steps: Method Wizard dialogs 8.3.1 Postproduct step dialog

Step	Action				
2	Select the flush volume; this is the volume of water that will be flushed through the filter into the permeate. The default value is 2 mL per cm ² of fil-				
	📝 Water Flush				
	ter surface area. Water Flush Volume 100				
	Note:				
	After a filter CIP, running a water flush is recommended.				

Water flux test

To include a water flux test step, use the following procedure.

Note:	If a water flux test will be performed, a water flush should be performed just before the water flux test.
Step	Action
1	Check the Water Flux Test box.
2	Select either TMP or NFF (Normal Flow Filtration) as the control mode.
3	Enter a value for the Flux Test:
	 a. For TMP, a value of 1 bar is default for all ultrafilters; for high molecular weight hollow fiber ultrafilters (≥ 500 kD), it is recommended to set this Water Flux Test TMP bar (0.01-5.2 bar) value to 0.5 bar. b. NFF (Feed Pressure) is default for microfiltration hollow fibers with a cut off of 0.1 µm and larger. Water Flux Test TMP NFF Feed Pressure = Feed Control for NFF
	c. NFF control of feed flow is also possible.

Note: When comparing status of a filter as a function of time and number of experiments, it is recommended to use the same filtration mode parameter each time the water flux test is run.

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs
- 8.3.1 Postproduct step dialog

Storage

To flush the filter with storage solution as part of the method, use the following procedure.

Step	Action			
1	Check the <i>Filter Storage Solution</i> box.			
2	Select the storage solution rinse volume; this is the volume of storage solu- tion which will be flushed through the filter into the permeate. The default value is 30 mL, but this can be edited to a maximum value of 300 mL for the small reservoir or 1000 mL for the large reservoir.			
	Filter Storage Solution Storage Volume 30 ml (30-300 ml)			

For information on specific instructions, for example **Constant Retentate Volume**, Chapter 14 Strategy instructions, on page 268.

All postproduct steps begin with a **Prepare System and Reservoir** block, except for the **Storage** step and stand-alone **Water Flux Test**, which begin with the **Prepare System** block. The **Prepare System** block is a quick flush of the recirculation loop, while the **Prepare System and Reservoir** step fills and empties the reservoir completely and thoroughly flushes the recirculation loop. The inlet valve position chosen depends on the liquid of the specific step.

Prepare system and reservoir

The **Prepare System and Reservoir** step fills and empties the reservoir completely and thoroughly flushes the recirculation loop. The inlet valve position chosen depends on the liquid of the specific step.

Stage Description

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs

Stage Description

The reservoir is then filled to the maximum volume (350 mL for the small reservoir, 1100 mL for the large reservoir).

The reservoir is emptied through **R-VB-Out2** (waste).

4

3

The reservoir is filled to a minimum working volume. A low transfer and equal feed flow is set, and 50 mL is pumped out of the retentate to waste through **R-VB-Out2**.

Stage Description

5 The tubing in the pathway between **R-VB-Out2** and the reservoir is rinsed by recirculating at a low feed flow rate for less than a minute.

- 6 The reservoir is emptied and refilled with the minimum working volume.
- 7 A low transfer and equal feed flow is set, and 50 mL is pumped out of the retentate to waste through **R-VB-Out2**.

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs

The retentate is recirculated for one minute using a feed pressure control of 80% of the maximum feed pressure value (to a maximum of 3 bar).

10

9

Then, the reservoir is emptied through **R-VB-Out2**.

8 Create postproduct steps using the Method Wizard 8.3 Postproduct steps: Method Wizard dialogs 8.3.2 Visualization of the postproduct steps

Prepare system

The **Prepare System** step performs a flush of the recirculation loop.

2

The reservoir is filled to a low volume.

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs

5

Stage Description

3 The retentate is rinsed out **R-VB-Out2** for the hold-up volume plus 5 mL.

4 The retentate is recirculated for one minute using a feed pressure control of 80% of the maximum feed pressure value (to a maximum of 3 bar).

The reservoir is emptied through **R-VB-Out2** (Waste).

Flush

The system is prepared according to the procedure **Prepare System and Reservoir** described in *Prepare System and Reservoir, on page 109.* The transfer inlet used is either **T-VB-In2** (conditioning buffer) or **T-VB-In5** (water).

Stage Description

1 The reservoir is filled with 100 mL solution. **Constant Retentate Volume** is activated. The crossflow rate is set at a feed pressure 80% of the maximum feed pressure value (to a maximum of 3 bar) and TMP regulation of 1 bar is started. The volume input in the dialog is rinsed through the filter out **P-VB-Out1** (Waste).

2 **Constant Retentate Volume** is disabled. 10 mL of the reservoir volume is emptied through the permeate recycle (**P-VB-Recycle**) to waste (**Transfer_Purge_Valve Waste**).

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs

Stage Description

3 The rest of the reservoir volume is emptied through **R-VB-Out2** and the flush is complete.

Filter CIP

The system is prepared according to the procedure described in *Prepare System and Reservoir, on page 109.* The transfer inlet used is **T-VB-In6** or **T-VB-In7** (CIP solution), depending on whether 1 or 2 CIP steps were selected.

Stage	Description
-------	-------------

- 1 The reservoir is filled with CIP solution to either the maximum volume (small reservoir, 350 mL) or a specified fill volume (large reservoir, minimum 200 mL (default) to 1100 mL).
- 2 **Constant Retentate Volume** is then activated and the permeate valve is opened to **P-VB-Out1**. The crossflow rate is set at a feed pressure 80% of the maximum feed pressure value (to a maximum of 3 bar) and flux rate filtration control of 30 LMH (flat sheet cassette, HF microfilter) or TMP filtration control of 1 bar (HF ultrafilter) is started.

After 30 mL has passed through the membrane, the permeate valve is set to **P-VB-Recycle** and the liquid is recycled back into the reservoir for the specified recirculation time.

5

4

After the specified CIP recirculation time, **Constant Retentate Volume** is disabled and the reservoir is emptied through **R-VB-Out2**.

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs

8

Stage Description

- 6 If a Water Flush between CIP has been selected, the system is prepared according to the procedure described in *Prepare system, on page 112.* The transfer inlet used is **T-VB-In5** (water).
- 7 The reservoir is then filled with 100 mL water and 10 mL of the reservoir volume is emptied through the permeate recycle (**P-VB-Recycle**) to waste (**Transfer_Purge_Valve Waste**).

The reservoir is then emptied through **R-VB-Out2**.

- 9 If a CIP 2 step has been selected, the system is prepared according to the procedure described in *Prepare system, on page 112*. The transfer inlet used is **T-VB-In7** (CIP2 solution).
- 10 The reservoir is filled with either 100 mL CIP 2 solution (small reservoir) or the specified fill volume (large reservoir) and the procedure described above in steps 2 to 5 is repeated.

Water flush

The system is prepared according to the procedure described in *Prepare System and Reservoir, on page 109.*

Stage Description

1 The reservoir is filled with 100 mL water. **Constant Retentate Volume** is activated, and the permeate valve is opened to **P-VB-Out1**. The crossflow rate is set at a feed pressure 80% of the maximum feed pressure value (to a maximum of 3 bar) and flux rate filtration control of 30 LMH (HF microfilter) or TMP filtration control of 1 bar (HF ultrafilter, flat sheet cassette) is started. The filter is flushed with specified flush volume out **P-VB-Out2** (default volume is 2 mL per cm² of filter surface area.)

2

After the specified flush through the filter, **Constant Retentate Volume** is disabled. If a **Water Flux Test** has been selected, the system skips to the test; if not, 10 mL is emptied through the filter. **P-VB** is set to **Recycle** and the liquid leaves the system through **Transfer_Purge_Valve** to **Waste**.

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs

Water flux test

If the step prior to the water flux test is a water flush step, the reservoir remains filled and the water flux test is a continuation of the water flush step. If the water flux test is used as a stand-alone step, the system is prepared according to the procedure described in *Prepare system*, on page 112. The transfer inlet used is **T-VB-In5** (water).

Stage Description

1

The permeate valve block, **P-VB**, is set to **Recycle** and the **Transfer_Purge_Valve** is set to **Reservoir**. A permeate flow is started by the specified TMP control (HF ultrafilter, flat sheet cassette; default value 1 bar) or in NFF mode (HF microfilter, default value is feed pressure, determined by the filter pore size). When a stable flux has been achieved, the normalized water flux value is measured by setting a **Set_Eval_Mark** with the parameter **Normalized_Water_Flux**.

Stage Description

3

Before ending the method, 10 mL water is flushed through the filter. P VB is set to *Recycle* and the liquid leaves the system through Trans fer_Purge_Valve to *Waste*.

The reservoir is then emptied through **R-VB-Out2**.

Storage

The system is prepared according to the procedure described in *Prepare system, on page 112*. The transfer inlet used is **T-VB-In8** (storage solution).

- 8 Create postproduct steps using the Method Wizard
- 8.3 Postproduct steps: Method Wizard dialogs

2

Stage Description

The permeate valve block, **P-VB**, is set to **Recycle** and the transfer purge valve is set to **Waste**. The crossflow rate is set at a feed pressure 80% of the maximum feed pressure value (to a maximum of 3 bar) and flux rate filtration control of 30 LMH (HF microfilter) or TMP filtration control of 1 bar (HF ultrafilter, flat sheet cassette) is started. The specified storage rinse volume is flushed through the filter into the permeate (default value 30 mL, but this can be edited to a maximum value of 300 mL for the small reservoir or 1000 mL for the large reservoir).

Stage Description

3

4

The **Transfer_Purge_Valve** is then switched to **Reservoir** and the storage solution recycled for 5 minutes.

The reservoir is then emptied through **R-VB-Out2**.

9 Process optimization in Ultrafiltration

About this chapter

This chapter provides information on using the **UF Process Optimization** in the **Method Wizard**.

Introduction

When filter type **Flat Sheet** is selected in the **Method Wizard Basic Settings** dialog, a second method option (in addition to **Concentration/Diafiltration**) is available: **UF Process Optimization**. This choice enables the creation of a TMP excursion method that can be used to determine the optimal crossflow and TMP settings for an ultrafiltration process.

Basic Settings				
Filter Type	Hollow Fibre I Flat Sheet			
Method	Concentration\Diafiltration 🔹			
Filter List	User-defined filter			
	UF Process Optimization 👻			
	Concentration/Diafiltration UF Process Optimization			

Experimental plan

As an example, a 5 mg/mL antibody is to be concentrated to 50 mg/mL using a 100 cm² filter. The experimental plan to determine the optimal crossflow rate and TMP for the 10 fold concentration increase includes testing 3 different feed flow rates (Q_F) with 5 TMP values at each crossflow rate. Because the optimal processing conditions can vary with concentration, the optimization is performed on both dilute and concentrated material. When testing different optimization parameters, always start with the least fouling conditions (high crossflow rate and low TMP), as the feed material will be continually recycled during the 15 combinations of crossflow rate and TMP tested.

Antibody concentration (mg/mL)		Set 1	Set 2	Set 3
5	Q _F (mL/min)	80	70	60
	TMP setpoints (bar)	0.75, 1.0, 1.25, 1.5, 1.7		
50	Q _F (mL/min)	80	70	60
	TMP setpoints (bar)	0.75, 1.	0, 1.25, 1	.5, 1.75

Step Action

- 1 Fill in the **Basic Settings** data for the flat sheet cassette:
 - a. Surface Area
 - b. Pore Size
 - c. Filter Hold-Up Volume
 - d. Feed Pressure Limit
 - e. TMP Limit
 - f. Extra Tubing Volume
 - g. Reservoir Size
 - h. Tubing Kit

Step Action

Basic Settings	Filter Type	Hollow	w Fibre	Flat Sheet		
Process Optimization	Method	Concentr	ation\Diafi	Itration 🔹		
Summary	Filter List	User-defi	ned filter	•		
		UF Proce	ess Optimiz	ation		
	Flat Sheet (sp	ecification	per filter)			
	Surface A	rea	100	cm^2 (16-1200 cm^2)		
	Pore Size		10	(0.05 to 1000 um or kD)		
	Filter Hol	d-Up Vol	2	ml (0.0-25.0 ml)		
	Feed Pres	sure Limit	4	bar (0-5.2 bar)		
	TMP Limit		4	bar (0-5.2 bar)		
	System setup					
	Number o	of filters	1 •]		
10//	Extra Tub	ing Volume	0.0	ml (0.0-25.0 ml)		
11///	Reservoir					
		350 m				
MET //		© 1100	ml			
	Tubing kit					
	Small ID (1.7 mm)					
		C Large	ID (2.9 mi	n)		

Step	Action
2	In the UF Process Optimization dialog, input the following:
	a. Buffer Conditioning before Start, if desired (default rinse volume is 30 mL, but this can be edited)
	b. Sample Volume
	Note:
	The sample volume is the total volume in the reservoir + retentate holdup volume.The system uses 31 mL extra sample volume to thoroughly flush the retentate loop, so that the sample is not diluted at the start of the

c. Number of crossflows

process.

- d. Feed Parameter (feed flow, retentate flow, or deltaP)
- e. Crossflow 1, 2, and 3
- f. Number and value of TMP Test Points

Step Action

g. *Retentate Recovery* after the run (the retentate loop will be emptied according to the procedure *Recovery, no flush, on page 169*).

asic Settings	Buffer Conditioning be	efore Start	
rocess Optimization	Buffer Rinse Volume	30	ml/min (30-300 ml/min)
ummary			
	Fill step will use 31 ml ex	tra volume	, i.e. if you write 100 ml
	when the system will use	131 ml.	
	Sample Volume	100	(38-350 ml)
		Note: San	nple volume is total retantate volume
	Number of crossflows	3 -	
	Feed Parameter	Feed Flow	-
	Crossflow 1:	80	ml/min (0-600 ml/min)
	Crossflow 2:	70	ml/min (0-600 ml/min)
	Crossflow 3:	60	ml/min (0-600 ml/min)
	TMP Test Points		
	Number of Points	5 🔻	
	TMP Point 1	0.75	bar (0.0-5.2 bar)
	TMP Point 2	1.0	bar (0.0-5.2 bar)
	TMP Point 3	1.25	bar (0.0-5.2 bar)
	TMP Point 4	1.5	bar (0.0-5.2 bar)
	TMP Point 5	1.75	bar (0.0-5.2 bar)
	Retentate Recovery		

Step Action

3

Click **Next**. A summary of required solutions will be displayed.

Note:

The total sample volume displayed in the Summary contains 31 mL extra sample volume for priming the recirculation loop.

rocess Optimization	System: AKTAc	rossflow		n
	66			
unnary	Transfer Inlets:			
	Inlet number	Designation	Volume	
	1	Sample	131 ml	
	2	Conditioning buffer	430 ml	
	3	Diafiltration buffer 1	See note	
	4	Diafiltration buffer 2	See note	
	5	Water	o ml	
	6	CIP solution 1	o ml	
	7	CIP solution 2	o ml	
	8	Storage Solution	o ml	=
	Retentate:			
	Retentate Out	Designation		
	1	Flush		
	2	Waste		
1///	3	Product		
	Permeate:			
	Permeate Out	Designation		
	1	Waste		
	2	Concentration step		
	3	Diafiltration step		
	Notest			
	Please note that the	is info will be stored in Metho	d notes	
	after "Finish" is exe	ecuted.	d notes	
				-
	L			-
State of the local division of the local div			Print	
				-

- 4 To save the process optimization method, select **File** → **Save As** in the **UNI-CORN Method Editor**.
- 5 Browse for a folder, enter a method name, select the system in the dropdown menu, and click **OK**.
- 6 UNICORN will create a complete method, with each step contained with a sub-block of a **User Defined** phase. To display the text instructions of the created method, click the **Text Instructions** tab.

Continuing the experiment

The suggested order of experiments is:

- 1. Run the method with the dilute protein solution.
- 2. Clean the filter.
- 3. Concentrate the protein.
- 4. Run the method with the concentrated protein concentration.
- 5. Clean and store the filter.

Evaluating results

The **Filtration Analysis** option in **Evaluation** allows for quick plotting and analysis of the optimization run, see Chapter 12 Evaluating ÄKTAcrossflow results using Filtration Analysis, on page 227.

The image below shows an example result.

Figure 9.1: Evaluation of a TMP excursion run with a dilute glucoamylase solution

10 Running ÄKTAcrossflow methods

About this chapter

This chapter describes how to make the final preparations before starting a run, how to start the run, and what procedures to follow during the run.

In this chapter

Secti	on See pa	
10.1	Final preparations	210
10.2	Start a run	213
10.3	During the run	215
10.4	Manual sampling during the run	216

10.1 Final preparations

Introduction

This section describes the final preparations that should be done before starting a run.

The *Summary* page created by the *Method Wizard* will list the required solutions, the corresponding inlet positions, and volumes, as well as the outlet position usage.

Note: If the air sensor terminates the sample load, the maximum sample volume will be the default 80,000 mL + 6 mL priming volume.

Product Steps	System: AKTAc	rossflow	ſ
Step 1	Transfer Inlets:		
Step 2	Inlet number	Designation	Volume
Recovery	1	Sample	Max
lostproduct Steps		Conditioning huffer	80006
ostproduct Steps	2	Diafiltration buffer 1	See note
Summary	3	Diafiltration buffer 2	See note
	5	Water	1380 ml
	6	CIP solution 1	1140 ml
	7	CIP solution 2	o ml
	8	Storage Solution	320 ml
	Retentate:		
	Retentate Out	Designation	
	1	Flush	
	2	Waste	
	3	Product	
	Permeate:		
	Permeate Out	Designation	
	1	Waste	L
	2	Concentration step	
	3	Diafiltration step	
	Note 1: Please note that this after "Finish" is exe	s info will be stored in Metho cuted.	od notes
	L		Print

Solutions

Immerse the ends of the transfer inlet tubing in the appropriate solution containers. Check that there are sufficient solution volumes available.

Note: Use ultra pure water when preparing solutions and buffers.

Sample

Put the end of the sample inlet tubing into an appropriate sample container. If the air sensor will terminate the sample load, ensure that the inlet tubing reaches the bot-tom of the container, so that air is not prematurely detected (which will end the sample load without loading the entire sample volume).

Waste

Check that following outlet tubings are placed in waste containers:

- Transfer Purge Valve Waste
- R-VB-Out2
- P-VB-Out1

Check that the waste containers are not full and will accept the volume diverted to it during the run.

Filter

Check that the correct filter is properly installed, with the correct tubing for feed, retentate, and permeate. If you are blocking one of the permeate ports, we normally suggest you block the permeate port closest to the feed with a stop plug.

Make sure that the filter is clean and of acceptable quality; utilize the **Water Flux Test** to ensure cleaning efficiency.

Calibration

Calibrate the pH electrode and the level sensor before use. Refer to Section 3.8 Calibrate the pH electrode, on page 53.

WARNINGS and CAUTIONS

CIP method

When running a method using a CIP solution containing sodium hydroxide (NaOH):

WARNING

NaOH is corrosive and therefore dangerous to health. Avoid spillage and wear safety glasses, safety gloves, and protective lab coat.

General

WARNING

Do not operate the ÄKTAcrossflow system at pressures above the specified maximum pressure (5.2 bar).

10.2 Start a run

This section describes how to start an ÄKTAcrossflow run.

To begin the run, use the following procedure.

Step Action

1 In the **System Control** module, click **File** \rightarrow **Run**and select the method you wish to run.

Note:

Depending on user input, a **Start Protocol** may appear consisting of a number of dialog boxes. (See UNICORN Method Manual for more information).

2 Click **Next** or **Back** to go through the dialog boxes.

Step Action

3 If the **Result Name and Location** dialog is selected, click the **START** button in this screen to initiate the method run. If the **Result Name and Loca***tion* dialog is not selected in the **Start Protocol**, double-click on the method name inside the folder to initiate the method run.

Result Name and Location >>	User: Default	
	Method: Level sensor Cal	
	Result	
	No result	
	Add unique identifier to result name	
	Directory:	Proven
		Drowise
	Scouting subdirectory:	
	Name:	
	Level sensor car out	

10.3 During the run

The method progress can be viewed in detail in UNICORN. The **System Control** module displays the current status of the ÄKTAcrossflow and displays up to four view panes for monitoring different aspects of the run.

To customize the view panes *Run Data*, *Chart*, *Process Picture*, and *Run Log*, drag and drop them to desired location.

For more information about customizing the view panes, see the UNICORN System Control Manual.

To stop the run before the end of programming, click the *End* button. You will be asked if you wish to save the partial run result.

Note: If the run is in a **Hold** and is paused, you must click **Hold** to continue. Clicking **Continue** will bring the run out of **Pause** and **Hold** at the same time, see the UNICORN System Control Manual. 1

10.4 Manual sampling during the run

The instruction **ManSample** allows sampling from the retentate in the reservoir by ensuring that concentration and diafiltration factors are correctly compensated. To perform a manual sample, use the following procedure.

Step Action

In System Control select Manual → Execute Manual Instructions.

- 2 Under *Recirc*, select *ManSample*.
- 3 Enter the planned sample volume.
- 4 Open the lid of the reservoir.
- 5 Take a sample with an appropriate pipette device.
- 6 Immediately, click *Execute* in the *ManSample* dialog.

Note:

If **ManSample** is used when **Constant Retentate Volume** is active, the system will start to compensate the lost volume immediately. Do not delay in the execution of the **ManSample** instruction.

7 Close the lid.

Note:

To get an evaluation mark for **Filtration Analysis** in the result file, use the manual instruction **Permeate** \rightarrow **Set_Eval_Mark** with the parameter **Ex-tData_vs_Capacity**.
11 Post run procedures

About this chapter

This chapter describes how to sanitize the ÄKTAcrossflow after a run and how to view and print the results.

In this chapter

Section		See page
11.1	System sanitization	218
11.2	Viewing and printing the result	224

11.1 System sanitization

To make sure that the system is clean, for example process in run before storage, or before a new filter is used, it is recommended to sanitize the system with a suitable sanitization solution, such as 1 M NaOH. By repeating the **System Sanitization** method with a different solution, the method can also be used to pH neutralize the system after sanitization and to exchange the solution in the system to an appropriate storage solution, for example 20% ethanol.

CAUTION

Always remove the filter and replace with a three-way connector (18117059) when running the **System Sanitization**. the **System Sanitization** method uses high flow rates and pressures that are incompatible with most crossflow filters. Replace the pH electrode with a dummy electrode and remove the reservoir float.

WARNING

The reservoir is overfilled during the sanitization. It is important to have the correct **Reservoir Cleaning Kit** tubing plumbed to waste; if this tubing is not secure, spillage will occur. NaOH is corrosive and therefore dangerous to health. Avoid spillage and wear safety glasses, safety gloves, and protective lab coat.

Note: The stirrer should be present in the reservoir during sanitization. However, it must be replaced with a new aseptic one after the sanitization.

Sanitization of the pump rinsing

system

When performing a **System Sanitization**, the pump rinsing system should be sanitized by replacing the 20% ethanol rinsing solution with 1 M NaOH.

Sanitization of the reservoir float

The reservoir float must be sanitized separately. Remove it from the reservoir before the **System Sanitization**. The float can be chemical sanitized or autoclaved.

Create a System sanitization method

To create a **System Sanitization** method, use the following procedure.

Step	Action
1	In the <i>Method Editor</i> , select the new method icon
2	Select the system.
3	Select the Method Wizard .
4	Click OK .

System:	
AKTAcrossflow	•
Create a new method by using the:	
Method Wizard:	
C Empty Method:	
Method Description	
Step-by-step selection of options to generate a n	iew method.
	OK Cancel

Step Action

5 In the **Basic Settings** dialog, select the method **System Sanitization**.

Basic Settings			
Filter Type	Hollow Fibre		
Method	Concentration\Diafiltration -		
Filter List	Calibrate level sensor Concentration\Diafiltration Installation Test System Sanitization		

lasic Settings	Filter Type Hollow Fibre Flat Sheet	
	Method System Sanitization	
	Preparations	
	1. Replace the filter with a three-way connector.	
	2. Connect the reservoir cleaning kit (RCK) between the top lid of the	
	reservoir and a waste bottle. Keep tubing free from solution in	
	the waste bottle to avoid siphoning back into the reservoir.	
	3. Connect the RCK manifold between the RVB and a waste bottle.	
	4. Replace the pH electrode with a dummy electrode.	
	Recirculation Time 30 min (0-999999 min)	
	V Purge (70% EtOH)	
	Note:	
	-All Inlets and Outlets are used.	
	-Volume used for System Sanitization with 350 ml reservoir:	
	System: 5000 ml (1 M NaOH)	
	Pump rinsing system: 2 * 200 ml (1 M NaOH)	
	Purge: 100 ml (70% EtOH) + 300 ml water	
	System setup	
	Reservoir Size	
	③ 350 ml	

6

Enter a **Recirculation Time**. A minimum recirculation time of 30 minutes is recommended.

Step	Action
7	Select the Reservoir Size .
	System setup
	Reservoir Size
	350 ml
	◎ 1100 ml
8	An optional purge with 70% ethanol can be used to remove trapped pock- ets of air in the retentate valve block. If selected, you will be prompted to

manually add the 70% ethanol solution to the reservoir.

Virge (70% EtOH)

Note:

The information displayed in the **Basic Settings** dialog. All inlets and outlets must be placed into the sanitization solution and all outlets will be used.

CAUTION

70% ethanol can require the use of explosion-proof areas and equipment.

- 9 Click **Finish**.
- 10 Save the method.

Run the System sanitization method

WARNING

NaOH is corrosive and therefore dangerous to health. Avoid spillage and wear safety glasses, safety gloves, and protective lab coat.

To run the **System Sanitization** method, use the following procedure.

Step	Action
1	Prepare a sanitization solution which is compatible with the ÄKTAcrossflow system, for example 1 M NaOH. If using the small (350 mL) reservoir, 5000 mL is required; if using the large (1100 mL) reservoir, 7000 mL is required.
2	Fill the pump piston rinsing bottles with 1 M NaOH (2 \times 200 mL).
3	Replace the filter with a three-way connector.
4	Replace the pH electrode with a dummy electrode.
5	Remove the float from the reservoir.
6	If an air filter is connected to the reservoir, remove the filter. Connect the <i>Reservoir Cleaning Kit</i> (11003386) tubing to the closed lid of the reservoir.

Note:

To avoid siphoning waste liquid back into the reservoir, keep the reservoir tubing above the liquid of waste solution in the waste bottle.

- 7 Place all inlet tubing into the prepared sanitization solution.
- 8 Place all outlet tubing into a waste container.

Step	Action
9	Run the method.
	Note:
	at the end of the System Sanitization method, the system will remain in sanitization solution which must be rinsed out for further use or for storage. Do not store the ÄKTAcrossflow in NaOH.
10	After the System Sanitization method, empty the system rinsing bottles and fill them with 20% ethanol.
11	Repeat the method using ultra pure water or buffer instead of sanitization solution.
12	After the run with ultra pure water or buffer, empty the system rinsing bot- tles and fill them with 20% ethanol.
13	Replace the stirrer with a new aseptic one.

11.2 Viewing and printing the result

11.2 Viewing and printing the result

This section describes the basics of how to view and print the result in the *Evaluation* module.

View the result

To view the result, use the following procedure.

Step	Action
1	Double click on the Evaluation icon to open the UNICORN Evaluation module.


```
2
```

Locate the result file in the **Results** folder.

	-	
Group By Folder Open V Filter Amange	9 Areah Adres	
olders	Results	
AKTAcrossflow	Note	Date Created
DefaultHome	/AKTAcrossflow/Example results	
	Any vi Any Example	28/05/2017 14:0
	Concentration Example	28/06/2017 14:0
	 Durtification Time Optimization 	
	EXternal vs Capacity Example	10/06/2018 233
	III Installation Test Example	28/02/2018 19/4
	Process Optimization Example	29/05/2017 20
	TMP Scouting Concentrated Protein	07/01/2018 16/0
	TMP Scouling Dilute Protein	10/05/2018 23:
	Water Flux Test Example 1	28/05/2017 14:5
	Water Flux Test Example 2	28/06/2017 14 5

3 Double-click the file.

Result:

file opens in a chart window in the *Evaluation* module.

4 Charts can be included or excluded for analysis from the chart selection pane.

11	crossflow1	crossflow2	crossflow3

Refer to the UNICORN Evaluation Manual for more information.

Print the result

To print the chart, use the following procedure.

Step	Action
1	Select the chart you want to print in the chart selection pane.

11.2 Viewing and printing the result

L	Image: Select title Image: Select title Imag		<figure><figure><figure><figure><section-header><section-header><section-header></section-header></section-header></section-header></figure></figure></figure></figure>			

3 Select the number of copies, printer, orientation, and check *Include Chart*.

4 Click on **Print**.

Refer to the UNICORN Evaluation Manual for more information.

Evaluation Classic

For more complex actions, such as report creation, procedures, and setting vertical markers over a reference area (for example, to average flux rates across a product run), **Evaluation Classic** is available under a separate UNICORN license. Refer to the UNICORN Evaluation Manual for more information.

The UNICORN **Evaluation** module contains a special analysis tool for filtration runs, called **Filtration Analysis**. Five different operations are available for rapid analysis of runs performed on the ÄKTAcrossflow system:

- Process Optimization
- Diafiltration Time Optimization
- Normalized Water Flux
- Capacity Plots
- Any vs Any

About this chapter

This chapter describes how to analyze results from the run using the UNICORN **Eval***uation* module.

In this chapter

Secti	See page	
12.1	Open a result file in the Evaluation module	228
12.2	Analysis operations	234

12.1 Open a result file in the *Evaluation* module

12.1 Open a result file in the *Evaluation* module

To start the *Filtration Analysis*, first open a result file in *Evaluation*. To do this, use the following procedure:

Step Action

1 In the UNICORN *Evaluation* module, select the result to be analyzed in the result browser.

Step Action 2 Double-click on one result file or right-click on multiple result files to com

Results Na /AKTAcrossflow/Example results Any vs Any Example Concentration Example Diafiltration Time Optimiza External vs Capacity Example Installation Test Example Process Optimization Example TMP Scouting Concentrated Protein TMP Scouting Dilute Protein Water Flux Test Example 1 Water Flux Test Example 2 Water Flux Test Example 3 Water Flux Test Example 4

Results

pare the selected results.

AKTAcr	ossflow/Ex	cample results				
	Any vs Any Example					
	Concent	ration Example				
	Diafiltrat	ion Time Optimization				
	External	vs Capacity Example				
	Installati	on Test Example				
	Process	Optimization Example				
	TMP Sco	TMP Scouting Concentrated Protein				
	TMP Sco	outing Dilute Protein				
V	Water FI	ux Test Example 1				
V	Wate 🗲	Open/Compare	Enter			
V	Wate	Rename	F2			
V	Wate Y Cott					
	a 1		Ctrl+C			
	ij	Paste	Ctrl+V			
		Export				
		export				
	8	Delete	Del			

12.1 Open a result file in the *Evaluation* module

3

4

Step Action

Once the result file(s) is open, click on the *Filtration Analysis* button to start the analysis.

Note:

If the result file is being analyzed for the first time, UNICORN will request first to close the opened result to enter the **Filtration Analysis** module.

Close the opened result to enter the *Filtration Analysis* module. The *Any Vs Any* algorithm is be applied to the selected results by default.

Note:

For each operation, specific curves for that operation are selected by default, but these are user editable, by clicking on **Formula Curves**.

File	Home	Filtration	View			
Any	vs Any	🔊 Process Opti	mization		_	
Capa	acity Plots -	Diafiltration T	ime Optimization	Flux	▼ VS TMP	•
P NWP				UV		
	Filt	tration Analysis		FeedFlow	ula Curves	
				RetFlow		
	ID Secuting C	opeoptrated Drote	in oroanflow?	PermFlow	t Drotoin	oroonflow2:TMD
TA		ing Dilute D	II CIOSSIIOW2	FeedPress	renotein	CIOSSILOWS.TMP
	1P SCOUT	ng Dilute P	rotein	RetenPress		
IN	ин			PermPress		
c.	1			pH Temp		
				DeltaP		
	T			TMP		
70	-			Flux		
				DFX Fact		
	-			RetVol		
				ResVol		
65	t			TransVol		
				ConvRatio		
	Ť			pNFF		
60	ļ					

Step Action

5

Select/deselect the curves and charts to be displayed in *Curve Selection* and *Chart Selection* on the right hand side.

Note:

ÄKTAcrossflow methods created by the **Method Wizard** contain multiple charts to split the results between preproduct, product, and postproduct steps. Additionally, each method begins with a chart 11, which is the data generated at the beginning of a method wizard run in which the reservoir is emptied to start the run. This can be de-selected as standard. 12.1 Open a result file in the *Evaluation* module

 Step
 Action

 6
 To apply a particular type of analysis, click on the analysis name in the Filtration Analysis selection box.

Result:

The chart now shows the selected analysis.

Note:

If multiple files have been opened, the results appear as separate charts which can be selected or removed by clicking on **Chart Selection** on the right hand side.

Step	Action					
7	Analyses can be saved, and are denoted in the Results list with a Filtra - tion Analysis symbol.					
	/AKTAcro	ssflow/Example results				
		Any vs Any Example				
		Concentration Example				
	Diafiltration Time Optimization					
	•]•	Diafiltration Time Optimization				
		External vs Capacity Example				

12.2 Analysis operations

In this section

Section	See page
12.2.1 Process optimization	235
12.2.2 Diafiltration time optimization	242
12.2.3 Normalized Water Flux (NWF)	245
12.2.4 Capacity plots	249
12.2.5 Any vs Any	254

12.2.1 Process optimization

Process optimization is used to analyze a special type of process characterization where a series of setpoints are tested. The most common experiments are excursions of TMP at different feed conditions, such as crossflow rates or protein concentration. In this operation, a new plot is made from user-defined points along original data curves (e.g., permeate flux vs. TMP). Process optimization also allows the user to overlay multiple plots (e.g., flux vs. TMP at different crossflow rates or protein concentrations). This capability can be used for any process parameter, but is most often used to determine the optimal crossflow rate and TMP for a product concentration/ diafiltration step.

Generally, permeate flux increases with increasing TMP. However, as a concentration polarization layer is formed at the membrane surface, the flux vs. TMP curve flattens. Increasing the TMP beyond this flattening often leads to a flat line or decreasing curve, where increasing the TMP does not increase the permeate flux, due to formation of a gel layer on the membrane surface and subsequent control of the gel layer over the filtration process.

With this operation, data from up to 3 crossflow rates per result (with multiple TMP values) can be overlaid.

Tip: For a comparison of more than 3 crossflow rates, split the optimization method into multiple runs. The multiple results can then be opened and compared, allowing filtration analysis to be performed on all crossflow rates in one operation.

12.2 Analysis operations

12.2.1 Process optimization

To start the **Process Optimization**, use the following steps:

Step	Action			
1	Either:			
	• Double-click on a single <i>Flat Sheet UF Process Optimization</i> result file			

or

• select multiple *Flat Sheet UF Process Optimization* result files, right click, and *Open/Compare*.

Note:

In this example, two results generated from flat sheet cassette **UF Process Optimization** methods are opened, one from dilute protein tested at 5 different TMPs each for 3 crossflow rates, and the second from concentrated protein tested at the same 5 different TMPs each, for the same 3 crossflow rates.

Results

Name

/AKTAcrossflow/Example results

	Any vs Any Example
	Concentration Example
	Diafiltration Time Optimization
	External vs Capacity Example
	Installation Test Example
	Process Optimization Example
V	TMP Scouting Concentrated Protein
v	TMP Scouting Concentrated Protein TMP Scouting Dilute Protein
 	TMP Scouting Concentrated Protein TMP Scouting Dilute Protein Water Flux Test Example 1
	TMP Scouting Concentrated ProteinTMP Scouting Dilute ProteinWater Flux Test Example 1Water Flux Test Example 2
	TMP Scouting Concentrated ProteinTMP Scouting Dilute ProteinWater Flux Test Example 1Water Flux Test Example 2Water Flux Test Example 3

Step Action

2 Click on *Filtration Analysis* and if prompted, close without saving.

Result:

The result files are opened under the default **Any vs Any** operation.

3 Deselect the two **11** charts by clicking on the multi-colored icon next to their names.

Chart Selection

11:TMP Scouting Concentrated Protein crossflow1:TMP Scouting Concentrated Protein crossflow2:TMP Scouting Concentrated Protein crossflow3:TMP Scouting Concentrated Protein 11:TMP Scouting Dilute Protein crossflow1:TMP Scouting Dilute Protein crossflow2:TMP Scouting Dilute Protein crossflow3:TMP Scouting Dilute Protein

4

Select the **Process Optimization** operation.

12.2 Analysis operations

12.2.1 Process optimization

Step Action

- 5 In the **UF Process Optimization** method, as each TMP stabilized, the method inserted an evaluation mark with the instruction **Set_Eval_Mark** for **ProcessOptimisation**. In the section at the bottom of the page, select each chart to see where the permeate flux evaluation marks were made in the optimization run.
- 6 For each chart, click on a data point in the table to create a vertical marker in the chart.

Note:

The data point can be changed if, based on visual determination of the flux curve, another point on the curve is more suitable. Simply bring the mouse cursor into the chart; a vertical marker appears. Right click to add another data point to the table. Click on any table entry that you would like to exclude. Scroll through all charts to make any desired changes to the data points in the table.

Step Action

7 For better visual inspection, click and drag on the chart to zoom into the selected area.

_							
P	Scouting Concent	rated Protein	crossflow3:TMP Scouti	ng Concentrated Protein	11:TMP Scouting Dilute Protein	cross	flow1:TMP Scouting Dilute Protein
	Time (min)	Flux (LMH)	TMP (bar)	Result Information			
	74.282	11.8	0.5	TMP Scouting Conc	entrated Protein , 01/07/2018 16:04	4:37	
	77.79	19.8	1	TMP Scouting Conc	entrated Protein , 01/07/2018 16:04	4:37	
	81.831	24.272	1.473	TMP Scouting Conc	entrated Protein , 01/07/2018 16:04	4:37	
	81.298	23.6	1.51	TMP Scouting Conc	A 16:04	4:37	
	84.807	24.8	2.01	TMP Scouting Conc	Exclude B 16:04	4:37	
	88.315	25.72	2.47	TMP Scouting Conc	entrated Protein , 01/07/2018 16:04	4:37	

12.2 Analysis operations

12.2.1 Process optimization

Step Action Note: A magnifying glass icon will appear in the upper right corner. Click the icon to zoom out to the full chart again.

8 Once you are satisfied with the data point selection, click on the **Expand Result View** in the bottom right hand corner.

Step	Action
9	Visually determine the most suitable crossflow rate and TMP value for a run by observing the change in the permeate flux curve with increasing TMP values.
	crossflow1:TMP Scouting Concentrated Protein •
	Concentrated Protein 80 ml/min
	Rename Result Curve
	Concentrated Protein 80 ml/min Concentrated Protein 80 ml/min crossflow2:TMP Scouting Concentrated Protein crossflow3:TMP Scouting Concentrated Protein crossflow1:TMP Scouting Dilute Protein crossflow2:TMP Scouting Dilute Protein crossflow3:TMP Scouting Dilute Protein
	Concentrated Protein 80 ml/min Concentrated Protein 70 ml/min Concentrated Protein 60 ml/min Dilute Protein 80 ml/min Dilute Protein 70 ml/min Dilute Protein 60 ml/min

Note:

The most appropriate combination of crossflow rate and TMP can be seen where the flux is still increasing with increasing TMP, before the flux curve starts to flatten. Additionally, under **View** \rightarrow **Data Points**, a vertical marker appears by moving the mouse cursor into the pane, showing the permeate flux rates (color-coded to the individual charts) at a certain TMP value.

- 10 To present your data, utilize *Copy to Clipboard*. There are two options:
 - **a.** *Presentation*, which copies the chart to the clipboard in a presentation size format.
 - **b.** *Window*, which copies the chart to the clipboard in screen size (same as Ctrl+C).

12.2 Analysis operations

12.2.2 Diafiltration time optimization

12.2.2 Diafiltration time optimization

For a given ultrafiltration process, the operation **Diafiltration Time Optimization** allows the user to identify the factor of volume concentration where the least time is required to complete the diafiltration. This is a function of the increase of concentration vs the subsequent decrease in permeate flux.

Diafiltration Time Optimization creates a plot of the diafiltration time optimization parameter (concentration factor × flux) vs concentration factor. The concentration factor that corresponds to the highest value of the DF time optimization parameter (y) along the plot is the optimal concentration factor to perform a diafiltration (for the conditions tested).

This filtration analysis is performed on a result file from a concentration process which was run to the desired maximum concentration factor. To start the **Diafiltra-***tion Time Optimization* analysis, use the following procedure:

Step	Action
1	Double-click on a result file in which a concentration to maximum desired concentration factor has been performed.
2	Click on Filtration Analysis and if requested, exit without saving.

- 3 Deselect any chart that does not contain the concentration step.
- 4 Click on the *Diafiltration Time Optimization* operation.

5 Deselect the chart **11** under **Chart Selection** by clicking on the multi-colored icon next to their names

Step Action

6 Set the left and right boundary limits for the data. To see the effect that the increasing concentration has on the permeate flux rate, use the left mouse button to drag the boundary marker to the high point of the permeate flux on the left.

Note:

The plotting region between the left and right markers is defined by **Start_Eval_Window** and **Stop_Eval_Window** instructions in a concentration step of a product method.

12.2 Analysis operations

12.2.2 Diafiltration time optimization

Determine the concentration factor in which the diafiltration should be performed by visual assessment. Make note of the concentration factor that corresponds to the highest point on the y axis.

12.2.3 Normalized Water Flux (NWF)

The membrane permeability can be tested using the **Normalized Water Flux** operation (also called the normalized water permeability or NWP, or clean water flux). This test is used to make sure that the cleaning is effective and to determine the lifetime of a filter. The **Normalized Water Flux** is calculated using the following formula:

Normalized water flux $[Lm^{-2}h^{-1}bar^{-1}] = (permeate flux \times temperature correction factor)/TMP$

The **Normalized water flux** operation enables the user to automatically calculate the normalized water flux from a result file and to plot results from multiple filter cycles on a single plot.

An industry standard temperature correction chart for crossflow filtration processes is used. Temperature can be displayed in either Celsius or Fahrenheit.

- 12 Evaluating ÄKTAcrossflow results using Filtration Analysis
- 12.2 Analysis operations
- 12.2.3 Normalized Water Flux (NWF)

1

To test the membrane permeability with the *Normalized Water Flux* operation, use the following procedure:

- Step Action
 - Either:
 - a. double-click on a single result file containing a Water Flux Test step, or
 - b. select multiple result files, right click, and Open/Compare.

Result	s				
	Name	2			
AKTAcr	ossflow/Ex	ample results			
	Any vs A	Any vs Any Example			
	Concentr	ration Example			
	Diafiltrati	Diafiltration Time Optimization			
	External	External vs Capacity Example			
	Installatio	Installation Test Example			
	Process	Process Optimization Example			
	TMP Sco	TMP Scouting Concentrated Protein			
	TMP Sco	TMP Scouting Dilute Protein			
V	Water Fl	Water Flux Test Example 1			
V	Wate 🗲	Open/Compare	Enter		
V	Wate 💉	Rename	F2		
V	Wate	Cut	Ctrl+X		
	í.	Сору	Ctrl+C		
	Ĩ	Paste	Ctrl+V		
		Export			
		Delete	Del		

Note:

In this example, four result files that contain **Water Flux Test** steps are opened.

2

Click on Filtration Analysis and if requested, exit without saving.

Step	Action	
3	Action Select the NWF operation. Any vs Any Capacity Plots NWF Any VS Any Capacity Plots	operation.
	Any vs Any Capacity Plots	 Process Optimization Diafiltration Time Optimization
	F	iltration Analysis

Note:

The resulting graph contains a **Value Table** in which the normalized water flux values are listed, in order of date and time stamp.

4

If required, enter a new value in the **Average Calculation Window (Avg)**.

Note:

The default value for the calculation window is 15 seconds before the marker position. The values are expressed as the exact flux at the marker point, with averages in parentheses based on the **Average Calculation Window** (**Avg**). The values in the **Value Table** will automatically update, including the **Correction Factor**, which is based on the averaged values.

12.2 Analysis operations

12.2.3 Normalized Water Flux (NWF)

12.2.4 Capacity plots

Capacity Plots allow the user to plot any process parameter vs the accumulating permeate volume normalized to the surface area. Capacity is defined as liters of permeate volume per m² surface area.

The capacity plot operation also accepts input of a system-external result from sampling during a run (e.g., activity assay results or protein concentration determination). This enables plotting of the external result vs capacity.

To start the process, use the following steps.

Step Action

1 Double-click on a result file containing either a concentration or a diafiltration product step.

Note:

Although most capacity plots are used for product steps, this operation can be used on any result file to plot any process parameter vs capacity. The example below will show the use of the capacity plot operation on a product step.

Results

/AKTAcrossflow/Example results

	Any vs Any Example
v	Capacity Plot Example
	Concentration Example
	Diafiltration Time Optimization
•≣•	Diafiltration Time Optimization
	External vs Capacity Example
	Installation Test Example
	Process Optimization Example
	TMP Scouting Concentrated Protein

2

3

Click on Filtration Analysis and if requested, exit without saving.

Deselect any chart which does not contain a product step.

12.2 Analysis operations

4

5

12.2.4 Capacity plots

Step Action

Select the desired curve to plot against capacity. For example, in a concentration step, permeate flux can be plotted as a function of filter capacity. Adjust the left and right boundary limits to include the desired data.

The filter area is imported from the result and is used to calculate capacity. It can, however, be edited, if desired.

Note:

A result file can contain more than one analysis window. When a product method is created by the **Method Wizard**, every product step is defined by **Start_Eval_Window** and **Stop_Eval_Window** instructions. The possible analysis windows in this result represent a 3-product step process: concentration, diafiltration, and concentration.

Analysis Window 1	•
Analysis Window 1	
Analysis Window 2	
Analysis Window 3	

Note:

Chart names can also be changed under **Home** \rightarrow **Rename Result Curve** by selecting the result name in the upper box and editing the name in the lower box.

12.2 Analysis operations

12.2.4 Capacity plots

Step Action

7 To plot *External Data vs Capacity*, select *External* in the drop-down menu.

Flux	 vs Capacit
External	
UV	ITVAS
Cond	11 4 6 5
FeedFlow	
RetFlow	
PermFlow	
TrfFlow	
FeedPress	
RetenPress	
PermPress	
pН	
Temp	
DeltaP	
TMP	
Flux	
ConcFactor	
DFX_Fact	
RetVol	
ResVol	
PermVol	
TransVol	
ConvRatio	
pNFF	

Result:

A table will open, into which the external data measured can be entered offline (e.g., activity assay results or protein concentration).

8

Enter the permeate volume at which the offline measurement was made and the value of the offline measurement by double-clicking in the pane under the appropriate columns (**PermVol** and **External**).

Any vs Any Capacity Plots NWF	Process Optimization Time	ation Optimization	External	• V:	a Capacity	Name Unit	UV @ 405 nm mAu	Data Overlav
Fi	ltration Analysis		F	ormula Curve	es	Set Unit/De	fine External Signal	Grouping
Product:Capacit	y Plot Example							
PermVol (ml)	UV @ 405 nm (mAu)	Result Informe	ation			Filter Area (m2)		
433.36	20	Capacity	Plot Example ,	06/11/2018	04:22:42	0.005		
740.31	165	Capacity	Plot Example ,	06/11/2018	04:22:42	0.005		
740.83	589	Capacity	Plot Example ,	06/11/2018	04:22:42	0.005		
1089.63	1785	Capacity	Plot Example ,	06/11/2018	04:22:42	0.005		
1089.89	420	Capacity	Plot Example ,	06/11/2018	04:22:42	0.005		
1115.99	26	Capacity	Plot Example ,	06/11/2018	04:22:42	0.005		
Step	Action							
------	--							
9	Enter the name of the external signal and the unit in the Set Unit/Define							
	External Signal box.							

10 To exclude a data point, select the data point, right click, and click *Exclude*.

Product:Capacity	Plot Example	
PermVol (ml)	UV @ 405 nm (mAu)	Result Information
433.36	20	Capacity Plot
740.31	530	Capacity Plot
740.83	😫 Evoluda	apacity Plot
1089.63		apacity Plot
1089.89	V Add	_apacity Plot
1115.99	26	Capacity Plot

- 11 To add additional data points during the run, in **System control** click **Man**ual → **Execute** → **Manual Instructions** → **Set Mark**.
- 12 Click on *Expand Result View* in the bottom right hand corner to view the plot.

12 Evaluating ÄKTAcrossflow results using *Filtration Analysis*12.2 Analysis operations12.2.5 *Any vs Any*

12.2.5 Any vs Any

The **Any vs Any** operation provides the capability to plot any process parameter captures as a curve in a given result file on either the x axis against any other process parameter captured as a curve on the y axis.

To perform this operation, use the following steps:

Step	Action		
------	--------	--	--

- 1 Double-click on a result file.
- 2 Click on *Filtration Analysis* and if requested, exit without saving.

Note:

Any vs Any is displayed by default.

- 3 Deselect any chart which does not contain information of interest.
- 4 To choose the curves to plot on the x and y axes, select the drop-down menus in the **Formula Curves** box.

Note:

If using the **Any vs Any** operation with a result generated from a method created by the **Method Wizard** that contains product steps (concentration and diafiltration), each step is defined by **Start_Eval_Window** and **Stop_Eval_Window** instructions.

5 If analyzing a product run with multiple analysis windows, choose the appropriate window in the drop-down menu in the **Select Analysis Window** box.

Note:

Step

Action

In this example, the conductivity curve will be plotted as a function of the diafiltration factor, so **Analysis Window 2** from the diafiltration step has been selected.

12 Evaluating ÄKTAcrossflow results using **Filtration Analysis** 12.2 Analysis operations 12.2.5 Any vs Any

7

Rename the plot under *Home* →*Rename Result Curve*.

13 Feedback tuning and PID parameters

About this chapter

This chapter provides a description of the PID parameters used to control the feed retentate and permeate pressure setpoints in the ÄKTAcrossflow.

In this chapter

Section		See page
13.1	PID control	258
13.2	Description of the PI parameters and regulators	262
13.3	Setting up feedback tuning	263
13.4	Optimizing the PI parameters	264

13.1 PID control

Whenever an automated process step requires the control of pressure (feed retentate and permeate pressure), the UNICORN control software of ÄKTAcrossflow employs PID-type controllers to control the pressure to its setpoint. Recommended default settings for the controllers (P, PI, or PID type) are listed in *table on page 259*. These settings provide fast response and robust control for most operating situations. However, the following controllers may require adjustment depending on the type and behavior of the filter:

Feed pump control

FeedPressure_PI, DeltaP_PI, and EmptyResFeed_PI.

These three controllers ramp the flow rate of the feed pump to achieve a desired pressure. The default settings are appropriate for flat sheet cassettes that give higher back pressure than hollow fiber cartridges at a given flow rate. When using hollow fiber cartridges, the action of the **Integral** controller (I parameter) can be increased (by reducing the figure for the I parameter) to yield a faster pump response and shorter ramp time, respectively. For the alternative settings, see *table on page 259*.

When creating methods with the *Method Wizard*, the alternative settings for PID control detailed in *table on page 259* are automatically used.

TMP control

TMP_PID_PermeatePump and TMP_PID_RetentateControlValve.

During TMP control, the permeate pump controls the permeate pressure by adjusting the flow rate of the permeate pump. Depending on membrane area, filter cut-off, and process conditions, the magnitude of the permeate flow rate may vary in a wide range from less than 1 mL/min to 50 mL/min and higher. Two settings are recommended to provide fast and robust control, see also *table on page 259*.

During non-product process steps when the membrane is not exposed to process fluids, thus avoiding the risk for membrane fouling or gel-layer formation, a high permeate flow rate and linear pressure-flow relationship is typical. Under these conditions, "fast" PID settings are recommended.

During non-product process steps when the membrane is not exposed to process fluids, thus with a risk of membrane fouling or gel-layer formation, slower but more robust control results in low permeate flow rates and a non-linear pressure-flow relationship. Under these conditions, "slow" PID settings are selected as default values in the strategy to provide maximum robustness of the control.

Con- trol el- ement	PID settings	Ρ	1	D
Feed pump control	Hollow fibers: FeedPressure_PI Del- taP_PI EmptyRes- Feed_PI Flat sheet cassettes: FeedPressure_PI Del- taP_PI EmptyRes- Feed_PI	0.050.050.05 0.050.050.05	502020 150150150	N/AN/ AN/A N/AN/ AN/A
TMP control	TMP_PID_Retentate- ControlVal- veTMP_PID_Permeate- Pump (membrane not exposed to pro- teins)TMP_PID_Perme- atePump (membrane exposed to pro- teins)TMP_PID_Perme- atePump (hollow fibres)	0.10.1 0.03 0.05	2020 300 75	1000
PUF control	PUF_PI_RetentateCon- trolValve PUF_PI_Per- meatePump	0.010.001	20200	N/AN/ A
Flux control	Flux_PI_RetentateCon- trolValve	0.1	20	N/A
NFF control	pNFF_PI	0.20.05	20150	N/AN/ A
Level control	Const_RVol_P	50	N/A	N/A

Table 13.1: Recommended settings for PID control.

Tuning and troubleshooting of PID control

Typically, only control settings for **Feed Pump** or **Permeate Pump** need to be adjusted. The control settings for the **Retentate Control Valve** given in *table on page 259* should not be modified at all. Common methods for PID optimization (e.g., Ziegler-Nichols method) can be applied.

In most situations, good results are obtained when using the following rules of thumb:

- Slower control: increase I parameter, decrease P parameter
- Faster control: decrease I parameter, increase P parameter

No drastic changes should be applied. An appropriate measure is to change parameter I up or down by a factor of 2, while initially keeping the P parameter constant.

PI parameters for larger filter

areas

When using larger filter areas, for example, > 100 cm^2 , it is necessary to optimize the PI parameters.

When optimizing the parameters to obtain a faster regulation, a recommended start is given below.

- Decrease I parameter by a factor of 2
- Increase P parameter by a factor of 1.2

When the regulation is too fast, which can result in, for example, noisy curves, it may be necessary to slow down the control by doing the following.

Increase I parameter and decrease P parameter

Hardware components using PI and PID parameters

The following table describes the PI and PID parameters that are used for hardware components and instructions.

Hardware component	Instruction
Feed pump	Feedpump_PIDeltaP_PI
Retentate Control Valve	TMP_PID_RetentateControlValve Flux_PI_Reten- tateControlValve PUF_PI_RetentateControlValve

Table 13.1: Hardware components using PI parameters.

Hardware component	Instruction
Permeate Pump	TMP_PID_PermeatePump PUF_PI_PermeatePump pNFF_PI
Reservoir	ConstRVol_P EmptyResFeed_PI

13 Feedback tuning and PID parameters

13.2 Description of the PI parameters and regulators

13.2 Description of the PI parameters and regulators

table on page 262 describes the three PID parameters used.

Table	13.1:	PIDp	arameters
-------	-------	------	-----------

Pa- ra- me- ter	Description
Ρ	The P parameter reduces the effect of an error but does not completely eliminate it. A simple P-regulator results in a stable stationary error be- tween actual and requested flow or pressure.
I	The I parameter eliminates the stationary error, but results in a slight in- stability leading to oscillations in the actual flow or pressure. The I pa- rameter can have values between 0 and infinity. Smaller values have a greater effect and a value of infinity has no effect.
	Note: The value infinity is set as 9999 in UNICORN.
D	In certain cases, the D parameter can reduce the oscillations introduced by a PI-regulator. D can have values between 0 and infinity, where larger values have a greater effect and a value of 0 has no effect.
	Note:
	Most often, a simple PI-regulator is preferable for control of pressure, and the ÄKTAcrossflow is therefore configured by default with the D parame- ter set to zero.

13.3 Setting up feedback tuning

UNICORN uses PI feedback tuning, where P and I are parameters that determine the tuning characteristics.

There are two ways to apply the feedback tuning instructions:

- In the *Method Editor* module.
- In the System Control module, reached with the commands Manual → Execute Manual Instructions or System → Settings.

Instruction groups

The PI instructions are found in the following Instruction groups described in the table below.

Instruction name	Instruction group
FeedPressure_PI	System: Settings: Specials Method/Manual: Re- circulation
TMP_PID_RetentateControl- Valve	System: Settings: Specials Method/Manual: Permeate
TMP_PID_PermeatePump	System: Settings: Specials Method/Manual: Permeate
Flux_PI_RetentateControl- Valve	System: Settings: Specials Method/Manual: Permeate
PUF_PI_RetentateControl- Valve	System: Settings: Specials Method/Manual: Permeate
PUF_PI_PermeatePump	System: Settings: Specials Method/Manual: Permeate
pNFF_PI	System: Settings: Specials Method/Manual: Permeate
DeltaP_PI	System: Settings: Specials Method/Manual: Re- circulation
ConstRVol_P	System: Settings: Specials Method/Manual: Transfer
EmptyResFeed_PI	System: Settings: Specials Method/Manual: Re- circulation

13 Feedback tuning and PID parameters

13.4 Optimizing the PI parameters

13.4 Optimizing the PI parameters

The objective to optimize the PI parameters is to obtain a sufficiently fast and smooth regulation without over-pressurization.

PI values that are too weak may lead to a smooth but slow ramping

PI values that are too aggressive may lead to a fast but unstable ramping.

Example: Regulation of the Feed pump

In this example, the *Feedpump_PI* instruction was adjusted during manual operation of the system. The **Feed pump** was run using different PI parameter values to obtain a set Feed pressure.

PI settings	Curve example (Feed pump flow)
1) Settings: The I parameter was set to a high val- ue (1000), which means it has minimal effect of the regulation. The P parameter was set to a high value (1.0).	
Result: Uncontrolled regulation with high fluctu- ations.	
2) Settings: The I parameter was kept to 1000. The P parameter was set to 0.5. Result: The size of the first step is too large.	

PI settings	Curve example (Feed pump flow)
3) Settings: The I parameter was maintained at 1000. The P parameter was set to 0.2. Result: The size of the first step is still too large.	
4) Settings: The I parameter was maintained at 1000. The P parameter was set to 0.1. Result: The size of the first step is still too large.	
5) Settings: The I parameter was maintained at 1000. The P parameter was set to 0.05. Result: The size of the step seems to be correct.	
6) Settings: The P parameter is maintained at 0.05. The optimization of the I parameter starts a value of 500 and continues with 200. Result: The slope of the curve increases with de- creased I values.	5

13 Feedback tuning and PID parameters

13.4 Optimizing the PI parameters

Pl settings	Curve example (Feed pump flow)
7) Settings: The I parameter is further decreased from 200 to 100. The P parameter is maintained at 0.05 Result: Increased slope is obtained.	
8) Settings: The P parameter was maintained at 0.05 and the I parameter was set to 25. Result: The curve indicates a too high flow before it stabilizes. The I parameter should be in- creased.	
9) Settings: The I parameter is increased to 50 and the P parameter is maintained at 0.05 Result: The PI parameters are optimized and a smooth and fast regulation is obtained.	

Example: Regulation of the Permeate pump

In this example, the **TMP_PI_PermeatePump** instruction was adjusted during manual operation of the system. TMP Control was set to 1 Bar and was monitored at different PI values.

PI settings	Curve example (TMP)
1) Settings: The P parameter was set to 1. The I parameter was set to 100.	man
Result: Pressure peaks were observed both in the beginning of the regulation and when the TMP was reached.	June
2) Settings: The P parameter was decreased to 0.2. The I parameter was decreased to 50.	mannen
Result: Smooth regulation up to set the TMP and no pressure peaks were observed when the TMP was reached.	

14 Strategy instructions

About this chapter

This chapter provides details on all of the system instructions for the ÄKTAcrossflow.

In this chapter

Section	on	See page
14.1	System settings and instruction boxes	269
14.2	Recirculation instructions	272
14.3	Permeate instructions	280
14.4	Transfer instructions	289
14.5	Alarms, Warnings, and Monitors	292
14.6	Fraction collector instructions	310
14.7	Monitor UPC-980	311
14.8	Watch instructions	313
14.9	Calibration	314

14.1 System settings and instruction boxes

System setting: the order of instructions within each group

Alarms/ Warnings	Specials	Monitors	Curves
UVpHCond- Feed_Press Trf_Press- DeltaPTMP- Flux- ShearpNFF- ValvesFlow- pathAirSen- sorZeroLe- vel	RetentateHoldUpVolPressur- eOffsetRPCVoffset RPCVhys- teresis PPCV_SetpTo- tal_Membrane_Area Lu- men_Diameter Total_Num- ber_of_Fibers AuxOut1Aux- Out2AuxOut3AuxOut4Feed- Pressure_PI Del- taP_PITMP_PID_Retentate- ControlValve TMP_PID_Per- meatePumpFlux_PI_Retenta- teControlValve PUF_PI_Re- tentateControlValve PUF_PI_Permeate- PumppNFF_PIEmptyRes- Feed_PI ConstRVol_PFrac- Parameters ¹ Frac_Number- ing_Mode ¹ Reservoir_Size	AveragingTimeUV- Pressure_Filter_Fac- tor CondTempComp- CondRefTemp pHTempCompAirSen- sorWatchPar_UV WatchPar_pH Watch- Par_CondWatch- Par_Ged_Press WatchPar_Re- ten_Press WatchPar_ PermPress Watch- Par_FeedFlow Watch- Par_Ret_Flow Watch- Par_Ret_Flow Watch- Par_Ret_Flow Watch- Par_PermFlow WatchPar_TrfFlow WatchPar_RetVol WatchPar_RetVol WatchPar_ResVol WatchPar_PermVol WatchPar_DeltaP WatchPar_TMP WatchPar_Flux WatchPar_Shear WatchPar_Shear WatchPar_Shear WatchPar_DF_X_Fact WatchPar_Op_X_Fact WatchPar_Shear	UVCond Feed- Flow RetFlow PermFlow TrfFlow Feed_Press RetenPress PHTemp Del- taP TMP Flux Shear Con- cFact DF_X_Fct Re- tVol ResVol PermVol TransVol Con- vRatio pNFF AuxIn1 Aux- Out1

¹ Fractionation instructions are only shown when *Fraction Collector* has been selected in *Administration* →*System Properties*.

Instruction box: the order of instructions within each group

Recirc	Permeate	Transfer	Alarms, Warnings, and Monitors	Watch ¹
FeedFlowRet- FlowFeedpres- sureDeltaP- ShearReten- tate_Valve_Block EmptyReservoir- EmptyReservoir- AbortConcentra- tion_FactorMix- erSpeedSet_Re- sVol_Totalizer- ManSample ² FeedPres- sure_PIDel- taP_PIEmptyRes- Feed_PIRetenta- teHoldupVol	TMP_Control- Flux_ControlPer- meate_Valve_blo ckPermeate_Un- restric- ted_FlowNFF_Con- stant- FlowNFF_Con- stantPressureS- tart_Eval_Win- dowS- top_Eval_Win- dowS- et_Eval_MarkS- et_PermVol_To- taliz- er %Flux_Drop_Cal cTotal_Mem- brane_Sur- face_AreaLu- men_Diameter- vTotal_Num- ber_Of_Fi- bersTMP_PI_Re- tentateControl- ValveTMP_PIPer- meatePump- Flux_PI_Retenta- teControlValve- PUF_PI_Retenta- teControlValve- PUF_PI_Permea- tePumpNFF_PI-	Trans_Flow- Con- stant_Ret_Volu- meTrans- fer_Valve_Block- sTrans- fer_Purge_Valve- Set_TrfVol_Total- izerDF_Exchan- geFactorMe- thod_Base ¹ Con- stRVol_P	AutoZeroUVAvera- ginfTimeUVPres- sure_Filter_FactorA- larm_UVAlarm_pHA- larm_CondA- larm_FeedPressA- larm_TrfPressA- larm_DeltaPA- larm_DeltaPA- larm_DNFFA- larm_ShearA- larm_ValvesA- larm_ValvesA- larm_Condvatch- par_DHWatch- Par_CondWatch- Par_RetenPress- WatchPar_Perm- PressWatchPar_Feed- FlowWatch-Par_Re- ten_FlowWatch- Par_PermFlowWatch- par_PermFlowWatch- par_RetvolWatch- par_RetvolWatch- par_RetvolWatch- par_RetvolWatch- par_RetvolWatch- par_RetvolWatch- par_RetvolWatch- par_TransfVolWatch- par_TransfVolWatch- par_ThPWatch- par_FluxWatch- par_ShearWatch- par_ShearWatch- par_ShearWatch- par_pNFFWatch- par_DNFFWatch- par_ConcFactor-	Hold_Until- Watch_UV- Watch_pHWatch _Cond- Watch_Feed- PressWatch_Re- tenPress- Watch_Perm- Press- Watch_Feed- FlowWatch_Re- ten_Flow- Watch_Perm- Flow- Watch_Perm- Flow- Watch_RetVol- Watch_RetVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_ResVol- Watch_PermVol- Watch_ResVol- Watch_PermVol- Watch_PermVol- Watch_ResVol- Watch_PermVol- Watch_PermVol- Watch_PermVol- Watch_PermVol- Watch_PermVol- Watch_PermVol- Watch_PermVol- Watch_DE- Watch_DE- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Shear- Watch_Aux- In1Watch_Aux- In3Watch_Aux- In3Watch_Aux- In4Watch_Off

Recirc	Permeate	Transfer	Alarms, Warnings, and Monitors	Watch ¹
	Fractionation ³ Fractionation- Stop ³ ResetTu- beNumberFeed- Tube ³		Watch- par_DF_X_FctWatch- par_%Flux_DropUV- lampOFFLevelSensor- Calibration	

¹ Only in Method Editor.

² Only in System control.

³ Fractionation instructions are only shown when *Fraction Collector* has been selected in *Administration* →*System Properties*.

14.2 Recirculation instructions

FeedFlow

Instruction name Feed- Flow	Formula Qf	Group Method/Manual → Recirc	
Parameter 1 name Flow- Rate	Mode Control Mode Direct	Position name (default un- derlined)0.0 <u>mL</u> /min (0-600)	
<i>Instruction Help</i> textStarts the flow on the <i>Feed Pump</i> . Feed Flow should stabi- lize at 98% of set value before a new instruction is executed.			
To stall a new instruction until the DeltaP has stabilized, a Watch_Stable Signal DeltaP should be programmed in the methods. Instruction resets RetFlow , Feed - Pressure , DeltaP , and Shear .			

RetFlow

Instruction name Ret- Flow	Formula Qr = Qf-Qp	Group Method/Manual → Recirc	
Parameter 1 name Flow- Rate	Mode Control Mode Direct	Position name (default un- derlined) <u>0.0</u> mL/min (0-600)	
<i>Instruction Help</i> textStarts the flow on the <i>Feed Pump</i> . <i>RetFlow</i> should stabilize at 98% of the set value before a new instruction is executed. Instruction resets <i>FeedFlow</i> , <i>FeedPressure</i> , <i>DeltaP</i> , and <i>Shear</i> .			
To stall a new instruction until the DeltaP has stabilized, a Watch_Stable Signal DeltaP should be programmed in the methods. Instruction resets FeedFlow , FeedPressure , DeltaP , and Shear .			

FeedPressure

Parameter 1 name Pres- sure	Mode Control Mode Direct	Position name (default un- derlined) <u>0.00</u> bar (0.00 - 5.20)
		5.207

Instruction Help textStarts the flow on the *Feed Pump* until the *Feed Pressure* setpoint is reached. The *FeedPressure* should stabilize at 98% of the set value before a new instruction is executed.

To stall a new instruction until the **DeltaP** has stabilized, a **Watch_Stable Signal DeltaP** should be programmed in the methods. Instruction resets **FeedFlow**, **Ret-Flow**, **DeltaP**, and **Shear**.

DeltaP

Instruction name Del-	Formula DeltaP = Pf -	Group Method/Manual
taP	Pr	→ Recirc
Parameter 1 name Pressure	Mode Control Mode PID	Position name (default un- derlined) <u>0.00</u> bar (0.00 - 5.20)

Instruction Help textStarts the flow on the *Feed Pump* until the *Pf-Pr* reaches the *DeltaP* setpoint. The *DeltaP* should stabilize at 98% of the set value before a new instruction is executed.

To stall a new instruction until the *DeltaP* has stabilized, a *Watch_Stable Signal DeltaP* should be programmed in the methods. Instruction resets *FeedFlow, Ret-Flow, Shear*, and *FeedPressure*.

Shear

Instruction name	Formula Shear = (4 × Qf)/(No. of Fi-		Group Method/
Shear	bers × π × (fiberradius) ³)		Manual →Recirc
Parameter 1 name FlowRate	Mode Control Mode PID	Note: Only for hol- low fibers	Position name (default under- lined) <u>0</u> s ⁻¹ (0 - 20 000)

Instruction Help text

This instruction is used for hollow fiber cartridges only and starts the flow on the *Feed Pump* until the flow rate that equals a shear rate for a particular hollow fiber cartridge is reached (which is dependent upon the fiber lumen diameter and number of individual fibers contained within the cartridge). The *Shear* should stabilize at 98% of the set value before a new instruction is executed.

To stall a new instruction until the **DeltaP** has stabilized, a **Watch_Stable Signal DeltaP** should be programmed in the methods. Instruction resets **FeedFlow**, **Ret-Flow**, **FeedPressure**, and **DeltaP**.

Retentate_Valve_Block

Instruction name Reten- tate_Valve_Block	Group Method/Manual →Recirc
Parameter name Macro	Position name (default underlined) <u>R-</u> <u>VB_Recycle</u> , R-VB-Out1, R-VB-Out2, R-VB-Out3
Instruction Help	
Selects the position for the Retentate Valve Block , either R-VB-Recycle , R-VB-Out1 (port located prior to filter device), R-VB-Out2 , or R-VB-Out3 . When Feed-Flow > 0 or Constant_Retentate_Volume is active, no action is allowed. A warning will be raised.	
Alarm help text 1: Retentate_Valve_Block instruction not allowed during Con- stant_Retentate_Volume	
Alarm help text 2: Retentate_Valve_Block instruction not allowed when Feed setpoint > 0	
Alarm help text 3: Retentate_Valve_Block instruction not allowed during Emp- tyReservoir	
Alarm help text 4: Retentate_Valve_Bloc	k instruction not allowed during NFF

RPCVoffset

Instruction name RPC Voffset	Group System →Settings →Specials
Parameter name Pressure	Position name (default under- lined) <u>350</u> , (0 - 999)

Instruction Help

Sets offset on **Retentate Control Valve** used by system during **TMP_Control**, **Flux_Control**, and **Permeate_Unrestricted_Flow**

Reservoir_Size

Instruction name Reservoir_Size	Group System →Settings →Specials
Parameter 1 name Size	Position name (default underlined) <u>350</u> mL, (350, 1100 mL)
Instruction Help	
Sets reservoir size to 350 or 1100 mL.	

EmptyReservoir

Instruction name EmptyReservoir	Group Method/Manual →Recirc
Parameter 1 name RetValveOutlet	Position name (default underlined) <u>R-VB-</u>
Parameter 2 name MaxFeedPres-	Out1, R-VB-Out2, R-VB-Out3
sure	<u>0.000</u> bar (0.00 - 5.20 bar)
Parameter 2 name MaxFeedFlow	<u>600</u> mL/min (0 - 600 mL/min)

Instruction Help

Instruction uses **R-VB-Out** to open a retentate outlet and **FeedPump** to empty the reservoir in a controlled manner. In order to perform this, the **FeedFlow** is reduced when the reservoir level is below a certain value and **R-VB-Out** creates a back pressure of approximately 2 bar to avoid siphoning. When the zero level is reached, defined as just below reservoir bottom surface, **FeedFlow** is immediately stopped.

EmptyReservoirAbort

Instruction name EmptyReservoir-	Group Method/Manual → Recirc
Abort	

Parameter 1 name RetValvePort Parameter 2 name FeedFlow	Position name (default underlined) <u>R-VB- Recycle</u> <u>0.000</u> bar (0.00 - 5.20 bar)
	<u>0.0</u> mL/min (0.0 - 600.0 mL/min)
Instruction Help	

EmptyReservoirAbort aborts the sequence initiated by the **EmptyReservoir** instruction.

Instruction immediately stops the *FeedFlow*, and sets *R-VB-Out* to the *Recycle* position. The *Watch EmptyResFinished* signal is then generated.

Concentration_Factor

Instruction name Concentration_Fac- tor	Group Method/Manual →Recirc
Parameter 1 name Mode Parameter 2 name Type	Position name (default underlined) <u>Off</u> , On
-	<u>FedBatch</u> , TankBatch
Instruction Help	
Starts the Concentration Factor calculation. Use a watch command in the meth- od to set the endpoint on concentration factor. FedBatch cannot be operated	

without a **Set_ResVol_Totalizer** volume entered.

Detailed information can be found in User Manual.

MixerSpeed

Instruction name MixerSpeed	Group Method/Manual → Recirc
Parameter 1 name Speed	Position name (default underlined) <u>Auto</u> (0 - 600 rpm)

Instruction Help

Sets the reservoir mixer speed. **Auto** adjusts the mixer speed to the reservoir size (set in **System** \rightarrow **Settings**) and linearly adjusts the speed to the current **ResVol**. Minimum speed is 80 rpm; maximum speed is 200 rpm for the 350 mL reservoir and 300 rpm for the 1100 mL reservoir.

Set_ResVol_Totalizer

Group Method/Manual →Recirc	
Position name (default underlined) <u>0.0</u> mL (0.00 - 5 000.00)	
Instruction Help	
Sets a desired volume for the reservoir volume totalizer. The totalizer value is cal- culated based on pump actions. Flow from the <i>Transfer Pump</i> will increase the value, if it is directed to the reservoir. Permeate flow measured by the <i>Permeate</i> <i>Pump</i> , if a permeate outlet value is open, will decrease the volume, but not if the	

Permeate_Valve_Block is in the Recycle position and the Transfer_Purge_Valve is in position Reservoir. FeedFlow with an open retentate valve

position will also decrease the totalizer volume.

ManSample

Instruction name ManSample	Group Manual →Recirc
Parameter 1 name Volume	Position name (default underlined) <u>0.00</u> mL (0.00 - 100.00)

Instruction Help

Reduces reservoir volume totalizer with the volume of removed sample at the moment of execution of the instruction. For more information, see *Section 10.4 Manual sampling during the run, on page 216.* For correct concentration and dia-filtration factor calculations, it is important that the *ManSample* instruction is executed immediately after taking the sample from the reservoir.

FeedPressure_PI

Instruction name FeedPressure_PI	Group System:Settings:SpecialsMethod/ Manual: Recirc
Parameter 1 name P parameter 2 name l	Position name (default underlined) <u>0.05</u> (0.00 - 10 000.00)
	<u>150.00</u> sec (0.00 - 10 000.00

Instruction Help

These parameters are used to tune the feedback control when *FeedPressure*control is active.

DeltaP_PI

Instruction name DeltaP_PI	Group System:Settings:SpecialsMe- thod/Manual: Recirc
Parameter 1 name P	Position name (default underlined) 0.05
Parameter 2 name l	(0.00 - 10 000.00)
	<u>150.00</u> sec (0.00 - 10 000.00
Instruction Help	
These parameters are used to tune the feedback control during DeltaP . For more	
information, see Chapter 13 Feedback tuning and PID parameters, on page 257.	

EmptyResFeed_PI

Instruction name EmptyResFeed_PI	Group System:Settings:SpecialsMe- thod/Manual: Recirc
Parameter 1 name P Parameter 2 name l	Position name (default underlined) <u>0.05</u> (0.00 - 10 000.00) <u>150.00</u> sec (0.00 - 10 000.00
Instruction Help	

These parameters are used to tune the feedback control during **EmptyReservoir**. For more information, see *Chapter 13 Feedback tuning and PID parameters, on page 257.*

RetentateHoldupVol

Instruction name RetentateHoldup-	Group System:Settings:SpecialsMe-
Vol	thod/Manual: Recirc

Parameter name Volume	Position name (default under- lined) <u>18.20</u> mL (0.00 - 100.00)

Instruction Help

See Section A Membrane and cartridge selection, on page 333 for more information.

14.3 Permeate instructions

TMP_Control

Instruction name TMP_Control	Formula TMP = ((Pf+ Pr/2)-Pp)	Group Method/Manual → Permeate
Parameter 1 name Flow- Rate	Mode Control Mode PID Note: No overshooting (max 10% of setpoint)	Position name (default underlined) <u>0.00</u> bar (0.00 - 5.20)
<i>Instruction Help</i> :Adjusts the <i>Pump</i> to maintain a <i>TMP</i> set that <i>DeltaP</i> is stable. Resets,	e Retentate_Control_Val point. Prior to activation of , Flux_Control and Perme	ve and the Permeate TMP control, make sure ate_Unrestricted_Flow.

Flux_Control

Instruction name Flux_Control	Formula Flux = (Qp[l/h])/(A[m²])	Group Method/Manual → Permeate
Parameter 1 name Flux	Mode Control Mode PID <i>Note:</i>	Position name (default underlined) <u>0.0</u> LMH (0.0 - 4800.0)
Parameter 2 name TMPli- mit	Pp ≤ Pr	<u>Off</u> (0.01 - 5.20 bar)

Instruction Help:

Starts the flow on the **Permeate Pump** as a flux rate. If the permeate pressure is < 0.2 bar, the **Retentate Control Valve** will lift the permeate pressure to the offset value.

When the **TMPlimit** is activated, the system will pause the run if the setpoint is reached.

Resets **TMP_Control** and **Permeate_Unrestricted_Flow**. The **Retentate Control Valve** will lift the permeate pressure to 95% of the offset value before the flux rate is ramped up in a 30 second interval.

Permeate_Valve_Blocks

Instruction name Permeate_Valve_Block	Group Method/Manual →Permeate
Parameter 1 name Macro	Position name (default under- lined) <u>Closed</u> , P-VB-Recycle , P-VB- Out1 , P-VB-Out2 , P-VB-Out3

Instruction Help

Selects the position for the **Permeate_Valve_Block** to **P-VB-Recycle**, **P-VB-Out1**, **P-VB-Out2**, or **P-VB-Out3**.

No valve block action allowed when *P-VB-recycle* is used and a permeate control mode is active. A warning will be raised.

During **Constant_Retentate_Volume**, the **P-VB-recycle** position is not allowed. A warning will be raised.

It is possible to change the **Permeate_Valve_Block** position between **P-VB-Out1**, **PVB-Out2**, and **P-VB-Out3** when the permeate flow is greater than 0. When opening a new valve outlet, the old outlet will remain open for approximately one second before closing.

Permeate_Valve_Block will remain in position at *Pause* and the flow on the *Permeate Pump* goes down to 0 mL/min.

Warning Help text 1

Instruction ignored. No valve block action allowed when **P-VB-recycle** is used and permeate control mode is active.

Warning help text 2

Instruction ignored. **P-VB-recycle** is not allowed during **Constant_retentate_volume**.

Permeate_Unrestricted_Flow

Instruction name Per- meate_Unrestric- ted_Flow	Formula Pp	Group Method/Manual → Permeate
Parameter 1 name Pres- sure	Mode Control Mode PID Note:	Position name (default un- derlined) <u>Disabled</u> , Ena- bled
	$Pp \leq Pr$	

Instruction Help text:

Starts the flow on the **Permeate Pump** at the offset permeate pressure. If **Pr** > **Pp**, the **Pr** value is used as the offset **Pp**. The **Retentate Control Valve** lifts **Pr** to the offset **Pp** if **Pr** < offset. Resets **TMP_Control** and **Flux_Control**.

Normal_Flow_Filtration

NFF_ConstantFlow

Instruction name NFF_ConstantFlow	Formula Qf	Group Method/Manual → Permeate
Parameter 1 name Flow	Mode Control Mode Direct	Position name (default underlined) <u>Off</u> 0.0 mL/min (0.0 - 600.0)
Instruction Help text:Starts the Feed Pump at the constant feed flow setpoint and the Permeate Pump at 20% of the constant feed flow setpoint. The Reten- tate Pressure Control Valve is closed to close the retentate loop. The Permeate Pressure Control Valve is opened completely.		
Instruction ignored if the feed flow > 0 mL/min		

NFF_ConstantPressure

Instruction name NFF_Con- stantPressure	Formula Pf	Group Method/Manual → Permeate
Parameter 1 name Pres- sure	Mode Control Mode PID	Position name (default underlined) <u>Off</u> 0.0 bar (0.00 - 5.20)
Instruction Help text: Starts the flow on the Feed Pump to run at the chosen con-		

Instruction Help text:Starts the flow on the Feed Pump to run at the chosen constant pressure setpoint and starts the **Permeate Pump** at the offset permeate pressure. If **P**r > **P**p, the **P**r value is used as the offset. The **Retentate Control Valve** lifts the **P**r to the offset if **P**r < offset. Resets **TMP_Control** and **Flux_Control**.

PressureOffset

Instruction name PressureOff	fset
------------------------------	------

Group**System →Settings →Specials**

Parameter name Pressure	Set point (default underlined) <u>0.2</u> bar (0.2 - 1.0 bar)	
Instruction Help text:Sets the permeate offset pressure used by system during		
TMP_Control, Flux_Control and Permeate_Unrestricted_Flow.		

Evaluation Instructions

Start_Eval_Window

Instruction nameStart_Eval_Window	Group Method/Manual→Permeate
Parameter name Mode	Position name (default underlined) <u>0</u> <u>= Any vs. any</u> , 1 = Capacity, 2 = DFTi- meOpt

Instruction Help text:Starts collection of chosen sets of data for the Filtration Analysis tool in Evaluation. Several sets of data Windows can be defined during a run. For more information, see Chapter 12 Evaluating ÄKTAcrossflow results using Filtration Analysis, on page 227.

Stop_Eval_Window

Instruction name Stop_Eval_Window	Group Method/Manual →Permeate
Parameter name Mode	Position name (default underlined) <u>0</u> <u>= Any vs. any</u> , 1 = Capacity, 2 = DFTi- meOpt

Instruction Help text:Stops collection of chosen sets of data for the *Filtration Analysis* tool in *Evaluation*. Several sets of data Windows can be defined during a run. For more information, see *Chapter 12 Evaluating ÄKTAcrossflow results using Filtration Analysis, on page 227*.

Set_Eval_Mark

Instruction nameSet_Eval_Mark	Group Method/Manual →Permeate
Parameter name Mode	Position name (default underlined) <u>0 =</u> <u>ProcessOptimization</u> , 1 = ExtData_vs_Ca- pacity, 2 = NormalisedWaterFlux

Instruction Help text:Sets a mark for data collection for the *Filtration Analysis* tool in *Evaluation*. Several *Mark* instructions can be defined during a run.

Set_PermVol_Totalizer

Instruction name Set_PermVol_Total- izer	Group Method/Manual →Permeate
Parameter name Volume	Set point (default underlined) <u>0.00</u> mL (0.00 - 5 000.00)
<i>Instruction Help</i> text:Sets a desired volume for the permeate volume totalizer. The totalizer value is calculated based on the action of the <i>Permeate Pump</i> . The totalizer volume increases with permeate flow.	

%Flux_Drop_Calculation

Instruction name%Flux_Drop_Calcula- tion	Group Method/Manual →Permeate
Parameter name Mode	Position name (default under- lined) <u>Off</u> , On
Instruction Help text:Upon activation, this permeate flux rate and sets it as the referent the % drop of the current flux value based of flux values does not register and the % Flux at 0.	instruction latches onto the current nce value. The instruction calculates on the reference value. A increase in c_ Drop_Calculation value will remain

Total_Membrane_Surface_Area

Instruction name Total_Mem- brane_Surface_Area	Group Method/Manual →Permeate Sys- tem →Settings →Specials
Parameter name Area	Position name (default underlined) $\underline{50}$ cm ² (1 - 1 200 cm ²)
Instruction Help text:Used in the calculation of the permeate flux value with the equation: $Flux=(Qp[I/h])/(A[m])$.	

Lumen_Diameter

Instruction name Lumen_Diame- ter	Group Method/Manual →Permeate Sys- tem →Settings →Specials
Parameter name Diameter	Set point (default underlined) <u>1.00</u> mm (0.1 - 10.0)
<i>Instruction Help</i> text:Together with can be calculated with the formula Sh radius) ³)	Total_Number_Of_Fibers , the Shear rate near = (4 × Qf) / (number of fibers × π × (fiber-

Total_Number_of_Fibers

Instruction name Total_Num- ber_of_Fibers	Group Method/Manual →Permeate Sys- tem →Settings →Specials
Parameter name Quantity	Position name (default underlined) <u>1</u> (1 - 1 000)
Instruction Help text:Together with the calculated with the formula Shear = $(4 \text{ dius})^3$)	The Lumen_Diameter , the Shear rate can be \times Qf) / (number of fibers $\times \pi \times$ (fiberra-

PPCV_Setp

Instruction name PPCV_Setp	Group System →Settings →Specials
Parameter name Pressure	Set point (default underlined) <u>700</u> (0 - 999)
Instruction Help text:Sets the offset on the Permeate Control Valve used by system during TMP_Control, Flux_Control and Permeate_Unrestricted_Flow.	

TMP_PI_RetentateControlValve

Instruction nameTMP_PI_Retentate-	Group
ControlValve	Method/Manual →Permeate Sys- tem →Settings →Specials

Parameter 1 name P Parameter 2 name I	Setpoint name (default under- lined) <u>0.10</u> (0.00 - 10 000.00)
Parameter 3 name D	<u>20.00</u> sec (0.00 - 10 000.00)
	<u>1.00</u> sec (0.00 - 10 000.00)
<i>Instruction Help</i> text: These parameters are used to tune the feedback control when <i>TMP_Control</i> is active. For details, see <i>Chapter 13 Feedback tuning and PID</i>	

parameters, on page 257.

Flux_PI_RetentateControlValve

Instruction nameFlux_PI_Retentate-	Group Method/Manual →Permeate
ControlValve	System →Settings →Specials
Parameter 1 name P	Setpoint name (default under-
Parameter 2 name l	lined) <u>0.10</u> (0.00 - 10 000.00)
<i>Instruction Help</i> text: These parameters are used to tune the feedback control when <i>Flux_Control</i> is active. For details, see <i>Chapter 13 Feedback tuning and PID</i>	
parameters, on page 257.	

PUF_PI_RetentateControlValve

Instruction name PUF_PI_Retentate-	Group Method/Manual →Permeate
ControlValve	System →Settings →Specials
Parameter 1 name P	Setpoint name (default under-
Parameter 2 name l	lined) <u>0.10</u> (0.00 - 10 000.00)
	<u>20.00</u> sec (0.00 - 10 000.00)
<i>Instruction Help</i> text: These parameters are used to tune the feedback control when <i>Permeate_Unrestricted_Flow</i> is active. For details, see <i>Chapter 13 Feed-</i>	

back tuning and PID parameters, on page 257.

PUF_PI_PermeatePump

Instruction name PUF_PI_Permeate- Pump	Group Method/Manual →Permeate System →Settings →Specials
Parameter 1 name P Parameter 2 name I	Setpoint name (default under- lined) <u>0.001</u> (0.00 - 10 000.00) <u>200.00</u> sec (0.00 - 10 000.00)
Instruction Help text:These parameters when Permeate_Unrestricted_Flow is a back tuning and PID parameters, on page	are used to tune the feedback control ctive. For details, see <i>Chapter 13 Feed-</i> 257.

pNFF_PI

Instruction name pNFF_PI	Group Method/Manual →Permeate Sys- tem →Settings →Specials
Parameter 1 name P Parameter 2 name l	Setpoint name (default underlined) <u>0.050</u> (0.000 - 10 000.000)
	<u>150.00</u> sec (0.000 - 10 000.000)
Instruction Help text:These parameter when Normal_Flow_Filtration is activituning and PID parameters, on page 25	ers are used to tune the feedback control ve. For details, see <i>Chapter 13 Feedback</i> 7.

Fractionation

Instruction name Fractionation	Group Method/Manual →Permeate
Parameter name FracSize	Setpoint name (default underlined) <u>0.0</u> mL (0.0 - 50.0)
<i>Instruction Help</i> text:Starts fraction co <i>FracSize</i> parameter is > 0 mL. The tube specified in <i>System</i> → <i>Settings</i> → <i>Speci</i> is stopped with the instruction <i>Fraction</i>	ollection if the fraction size specified by the change is delayed by the delay volume als → FracParameters . The fractionation nationStop .

FeedTube

Instruction name Feed Tube	Group Method/Manual →Permeate

Instruction Help text:During fractionation, the *FeedTube* instruction moves the tube rack forward one tube after the delay volume specified in *System*→*Settings* → *Specials* → *FracParameters* → *DelayVol* has been collected and a fraction mark is given. When Fractionation is not used, *FeedTube* moves the rack instantly and no fraction mark is given.

FractionationStop

|--|

Group Method/Manual → Permeate

Instruction Help text: Stops the fraction collection after the delay volume specified in **System** \rightarrow **Settings** \rightarrow **Specials** \rightarrow **FracParameters** \rightarrow **DelayVol** has been collected.

ResetFracNumber

Instruction name **ResetFracNumber**

Group *Method/Manual* → *Permeate*

Warning Help: ResetFracNumber is not allowed during fractionation. Instruction ignored.
14.4 Transfer instructions

Transfer Flow

Instruction name Transfer Flow	Group Method/Manual →Transfer
Parameter name FlowRate	Position name (default underlined) <u>0.0</u> mL (0.0 - 200.0)
Instruction Help text:Starts the flow on the Transfer pump at the set flow rate.	

Constant_Retentate_Volume

Instruction name Con- stant_Retentate_Vol- ume	Formula: Qt = Qp	Group Method/Manual → Transfer
Parameter name Mode	Mode: Control Mode	Position name (default un- derlined) <u>CRV_Off</u> , CRV_On
<i>CRV_On</i> = liquid level in the reservoir is kept constant at the level detected when the instruction is activated by adjusting the transfer flow to compensate for de- tected changes in the reservoir level. <i>CRV_Off</i> = immediate inactivation of the in- struction. If the retentate valve is open when executing <i>Constant_Reten-</i> <i>tate_Volume</i> , a warning will be raised and the instruction will be ignored. If P-VB- recycle is open when executing <i>Constant_Retentate_Volume CRV_On</i> , a warn- ing will be raised and the instruction ignored		
Warning Help text 1		
Constant_Retentate_Volume is not allowed with Retentate_Valve_Block open. Instruction ignored.		
Warning Help text 2		
Constant_Retentate_Volume is not allowed with P-VB-recycle position open. Instruction ignored.		

Transfer_Valve_Blocks

Instruction name Trans-	Group Method/Manual →Transfer
fer_Valve_Blocks	

<i>Instruction Help</i> text:Selects the positic	Inted <u>Closed</u> , FVB-In1, FVB-In2, FVB- In3, T-VB-In4, T-VB-In5, T-VB-In6, T-VB- In7, T-VB-In8 on for the Transfer_Valve_Blocks , T-VB-
In1, T-VB- In2, T-VB- In3, T-VB- In4, T-VI	B- In5, T-VB- In6, T-VB- In7, T-VB- In8

The inlet valves will not be set to their default position (**Closed**) at **End** until the flow on the pump has gone down to 0 mL/min.

Transfer_Purge_Valve

Instruction name Trans- fer_Purge_Valve	Group Method/Manual →Transfer
Parameter name Instruction	Position name (default underlined) <u>To_Reservoir</u> , Waste
<i>Instruction Help</i> text: Selects transfer flow direction to <i>Reservoir</i> or <i>Waste</i> . The <i>Waste</i> position is use- ful when cleaning the transfer inlets .	

Set_TrfVol_Totalizer

Instruction name Set_TrfVol_Totaliz- er	Group Method/Manual → Transfer
Parameter name Volume	Position name (default under- lined) <u>0.00</u> mL (0.00 - 5 000.00)
Instruction Help text:Sets a desired volume for the transfer volume totalizer. The totalizer value is calculated based on the action of the Transfer Pump . The totalizer volume increases with transfer flow.	

DF_Exchange_Factor

Instruction name DF_Exchange_Fac-	Group Method/Manual →Transfer
tor	

Parameter name Mode	Position name (default underlined) <u>Off</u> , On
<i>Instruction Help</i> text: The <i>DiaFiltration Exchange Factor</i> calculates the relationship between the total buffer volume introduced into the reservoir during a diafiltration step and the retentate volume when the diafiltration was started.	

MethodBase

Instruction name Method Base	Group Method → Transfer
Parameter name Base	Position name (default underlined) <u>Per-</u> <u>meatePump</u> , FeedPump, Transfer- Pump
<i>Instruction Help</i> :Sets the base for method volume calculation to the chosen pump.	

ConstRVol_P

Instruction name ConstRVol_P	Group Method/Manual →Transfer System →Settings →Specials
Parameter name P	Position name (default under- lined) <u>50.000</u> mbar, (0.000 - 10 000.000)
Instruction Help : The P parameter affects the response of the CRV algorithm. A higher value causes faster transfer flow increase to compensate for a decreasing	

reservoir level, and vice versa. The **P** parameter also affects how quickly the start level is restored after the CRV instruction is turned off. Note: A higher **P** parameter value amplifies the noise in the level sensor signal, which may cause instability. For details, see *Chapter 13 Feedback tuning and PID parameters, on page 257.*

14.5 Alarms, Warnings, and Monitors

AutozeroUV

Instruction name AutoZeroUV	Group Method/Manual → Alarms&Monitors
Instruction Help:Sets the relative AU to zero.	

AveragingTime

Instruction name AveragingTimeUV	Group System:Settings:MonitorsMe- thod/Manual:Alarms&Monitors
Parameter name AvTimeUV	Position name (default under- lined)0.02, 0.04, 0.08, 0.16, 0.32, 0.64, <u>1.30,</u> 2.60, 5.10, 10
Instruction Help : Filters the noise in the UV signal. Averaging time is the time interval used for calculating the moving average of the absorbance signal. A long averaging time will smooth out noise efficiently, but will also distort the peaks.	

Pressure_Filter_Factor

Instruction name Pressure_Filter_Fac- tor	Group System:Settings:MonitorsMe- thod/Manual:Alarms&Monitors
Parameter name AvTimeUV	Position name (default underlined) <u>30</u> (NoFilter, 2–100)
<i>Instruction Help</i> : When active all pressure signals are filtered to avoid overshoot- ing and hysteresis during pressure regulating operations, i.e., all control modes.	

Alarm_UV

Instruction nameAlarm_UV	Group System:Settings:Alarms
	Method/Manual:Alarms&Monitors

Parameter 1 name Mode Parameter 2 name High Alarm Parameter 3 name Low Alarm	Position name (default underlined) <u>Dis-abled</u> , Enabled Setpoint (default underlined) <u>6000.000</u> mAU (-6000.000–6000.000) Setpoint (default under- lined) <u>-6000.000</u> mAU (-6000.000– 6000.000)
Instruction Help:Sets the alarm limits for the UV signal.	

Alarm_pH

Instruction name Alarm_pH	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm Parameter 3 name Low Alarm	Position name (default underlined) <u>Dis-abled</u> , Enabled Setpoint (default underlined) <u>14.00</u> pH (0.00–14.00) Setpoint (default underlined) <u>0.00</u> pH (0.00–14.00)
Instruction Help: Sets the alarm limits for the pH signal.	

Alarm_Cond

Instruction name Alarm_Cond	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm Parameter 3 name Low Alarm	Position name (default underlined) <u>Dis- abled</u> , Enabled Setpoint (default underlined) <u>999.99</u> mS/cm (0.00–1000.00) Setpoint (default underlined) <u>0.00</u> mS/cm (0.00–1000.00)
Instruction Help:Sets the alarm limits for the conductivity signal.	

Alarm_FeedPress

Instruction nameAlarm_FeedPress	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm Parameter 3 name Low Alarm	Position name (default underlined)Dis- abled, <u>Enabled</u> Setpoint (default underlined) <u>5.20</u> bar (0.00–5.20) Setpoint (default underlined) <u>0.00</u> bar
(0.00–5.20) Instruction Help :Sets the alarm limits for pressure from the feed pump. When reached, the system is set to Pause	
<i>Alarm Help</i> : <i>HighAlarm</i> : The feed pressure has exceeded the <i>HighAlarm</i> limit <i>LowAlarm</i> : The feed pressure has fallen below the <i>LowAlarm</i> limit.Pressure lim- its are set by <i>AlarmFeed_Press</i> .	

Alarm_TrfPress

Instruction nameAlarm_TrfPress	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm	Position name (default underlined)Dis- abled, <u>Enabled</u>
Parameter 3 name Low Alarm	Setpoint (default underlined) <u>5.20</u> bar (0.00–5.20)
	Setpoint (default underlined) <u>0.00</u> bar (0.00–5.20)
Instruction Help:Sets the alarm limits for pressure from the transfer pump.	

When reached, the system is set to **Pause.**

Alarm Help: HighAlarm: The transfer pressure has fallen below the **HighAlarm** limit. **LowAlarm**: The transfer pressure has fallen below the **LowAlarm** limit Pressure limits are set by **AlarmFeed_Press**.Press **Acknowledge** on the error message window, then press **Continue**.

Alarm_DeltaP

Instruction nameAlarm_DeltaP	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm	Position name (default underlined) <u>Dis-</u> <u>abled</u> , Enabled
Parameter 3 name <i>Low Alarm</i>	Setpoint (default underlined) <u>5.20</u> bar (0.00–5.20)
	Setpoint (default underlined) <u>0.00</u> bar (0.00–5.20)
<i>Instruction Help</i> :Sets the alarm limits for the <i>DeltaP</i> (<i>Pf-Pr</i>). When reached, the system is set to <i>Pause</i> .	
Alarm Help: HighAlarm cause: the DeltaP has exceeded the HighAlarm lim- it.LowAlarm cause: the DeltaP has fallen below the LowAlarm limit.Pressure	

Alarm_TMP

limits are set by **Alarm_DeltaP**.

Instruction nameAlarm_TMP	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm	Position name (default underlined) <u>Dis-</u> <u>abled</u> , Enabled
Parameter 3 name Low Alarm	Setpoint (default underlined) <u>5.20</u> bar (0.00-5.20)
	Setpoint (default underlined) <u>0.00</u> bar (0.00-5.20)
<i>Instruction Help</i> :Sets the alarm limits for transmembrane pressure (<i>TMP</i>). When reached the system is set to <i>Pause</i> .	

Alarm Help text: *HighAlarm* cause: The *TMP* has exceeded the *HighAlarm* limit*LowAlarm* cause: The *TMP* has fallen below the *LowAlarm* limitPressure limits are set by *Alarm_TMP*.

Alarm_Flux

Instruction nameAlarm_Flux	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm Parameter 7 name 1 a ut Alarm	Position name (default underlined) <u>Dis-abled</u> , Enabled Setpoint (default underlined)120000.0
Parameter 3 name Low Alarm	LMH (0.0-120 000.0) Setpoint (default underlined) <u>0.0</u> LMH (0.0-120 000.0)
<i>Instruction Help</i> :Sets the alarm limits for the permeate flux rate. When reached the system is set to <i>Pause</i> .	
Alarm Help text: HighAlarm cause: The permeate flux rate has exceeded the HighAlarm limit LowAlarm cause: The permeate flux rate has fallen below the LowAlarm limitPressure limits are set by Alarm_Flux .	

Alarm_pNFF

Instruction nameAlarm_pNFF	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm	Position name (default underlined) <u>Dis-</u> <u>abled</u> , Enabled
Parameter 3 name <i>Low Alarm</i>	Setpoint (default underlined) <u>5.20</u> bar (0.00-5.20)
	Setpoint (default underlined) <u>0.00</u> bar (0.00-5.20)
<i>Instruction Help</i> :Sets the alarm limits for <i>pNFF</i> (feed pressure - permeate pressure). When reached the system is set to <i>Pause</i> .	

Alarm Help: HighAlarm cause: The *pNFF* has exceeded the HighAlarm limitLowAlarm cause: The *pNFF* has fallen below the LowAlarm limitPressure limits are set by Alarm_pNFF.

Alarm_Shear

Instruction nameAlarm_Shear	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode Parameter 2 name High Alarm	Position name (default underlined) <u>Dis-</u> <u>abled</u> , Enabled
Parameter 3 name <i>Low Alarm</i>	Setpoint (default underlined) <u>20 000</u> s ⁻¹ (0-20 000)
	Setpoint (default underlined) <u>0</u> s ⁻¹ (0-20 000)
<i>Instruction Help</i> :Sets the alarm limits for shear rate. When reached the system is set to <i>Pause</i> .	
Alarm Help: HighAlarm cause: The shear rate has exceeded the HighAlarm lim- itLowAlarm cause: The shear rate has fallen below the LowAlarm limitPressure	

Alarm_Valves

limits are set by **Alarm_pNFF**.

Instruction name Alarm_Valves	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter name T_VB1 T_VB2	Position name (default underlined)Dis- abled, <u>Enabled</u> Disabled, Enabled
P_VB	Disabled, <u>Enabled</u> Disabled, <u>Enabled</u>

Instruction Help text: Enables/disables the transfer, retentate, and permeate valve alarms..

Alarm Help: If a valve is not responding, an alarm is raised and the system is set to *Pause*.

Wait at least 5 seconds, then press the **Continue** button. If the alarm persists, try to restart the system. If the alarm still persists, check if the valve is damaged. If the valve is damaged, contact your GE service representative.

Alarm_FlowPath

Instruction nameAlarm_FlowPath	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode	Position name (default underlined) <u>En-</u> <u>abled</u> , Disabled
Instruction Help :Enables/Disables the transfer and permeate flow path alarms. The Alarm_FlowPath checks for closed flow paths (all transfer inlets closed, all permeate outlets closed) when transfer or permeate flow is > 0. An alarm will be raised and the system is set to Pause .	
Alarm 1 Help: TrfFlow > 0 and inlets are closed Alarm 2 Help: PermFlow > 0 and outlets are closed	

Alarm_Airsensor

Instruction nameAlarm_Airsensor	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Mode	Position name (default underlined) <u>Dis-</u> <u>abled</u> , Enabled
<i>Instruction Help</i> :Sets the alarm for air sensor. An alarm will set the system to <i>Pause</i> if air is detected in air sensor flow cell.	

WatchPar_UV

Instruction nameWatchPar_UV	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined) <u>0.00</u> mAU
Parameter 2 name Delta_Base	(0.00-6000.00)
	<u>0.00</u> mAU (0.00-6000.00)

Instruction Help:Watch on UV signal. The **DeltaPeak** setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_Cond

Instruction nameWatchPar_Cond	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined)0.00
Parameter 2 name Delta_Base	mS/cm (0.00-999.90)
	<u>0.00</u> mS/cm (0.00-999.90)

Instruction Help:Watch on conductivity signal. The **Delta_Peak** setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_FeedPress

Instruction nameWatchPar_Feed- Press	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined) <u>0.00</u> bar
Parameter 2 name Delta_Base	(0.00-5.20)
	<u>0.00</u> bar (0.00-5.20)

Instruction Help:Watch on at pressure reported at the filter feed port. The Delta_Peak setting affects only the Less than or valley and Peak max conditions when using the Watch instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. Delta_Base setting affects only the Stable signal condition. For this condition to be activated, the signal may not vary by more than the Delta_Base value up or down over the time interval specified in the Stable signal condition in the Watch instruction.

WatchPar_RetenPress

Instruction name WatchPar_Reten- Press	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.00</u> bar (0.00-5.20) <u>0.00</u> bar (0.00-5.20)
Instruction Help text: Watch on the pressure reported at the filter feed port. The	

Delta_Peak setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_PermPress

Instruction name WatchPar_Perm- Press	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined) <u>0.00</u> bar
Parameter 2 name Delta_Base	(0.00-5.20)
	<u>0.00</u> bar (0.00-5.20)

Instruction Help:Watch on the pressure reported at the filter permeate port. The **Delta_Peak** setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_FeedFlow

Instruction nameWatchPar_Feed-	Group System:Settings:Alarms
Flow	Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.0</u> mL/min (0.0-600.0) <u>0.0</u> mL/min (0.0-600.0)

Instruction Help:Watch on the feed flow rate. The **Delta_Peak** setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_RetFlow

Instruction nameWatchPar_RetFlow	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name DeltaPeak Parameter 2 name Delta Base	Setpoint (default underlined) <u>0.0</u> mL/min (0.0-600.0)
	<u>0.0</u> mL/min(0.0-600.0)

Instruction Help:Watch on the retentate flow rate. The Delta_Peak setting affects only the Less than or valley and Peak max conditions when using the Watch instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. Delta_Base setting affects only the Stable signal condition. For this condition to be activated, the signal may not vary by more than the Delta_Base value up or down over the time interval specified in the Stable signal condition in the Watch instruction.

WatchPar_PermFlow

Instruction name WatchPar_Perm-	Group System:Settings:Alarms
Flow	Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.0</u> mL/min (0.0-200.0) <u>0.0</u> mL/min (0.0-200.0)
Instruction Help:Watch on the permeat	e flow rate. The Delta_Peak setting af-
fects only the Less than or valley and Per	rak max conditions when using the
Watch instruction (see the UNICORN Us	er Manual for more information). As a
general guideline, set the value to 2-3 tim	ues the noise level and 5-10% of the
smallest expected peak height. Delta_Bo	use setting affects only the Stable signal
condition. For this condition to be activat	red, the signal may not vary by more than
the Delta_Base value up or down over th	ue time interval specified in the Stable
signal condition in the Watch instruction	n.

WatchPar_TrfFlow

Instruction nameWatchPar_TrfFlow	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.0</u> mL/min (0.0-200.0)
	<u>0.0</u> mL/min (0.0-200.0)

Instruction Help:Watch on the transfer flow rate. The **Delta_Peak** setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_RetVol

Instruction nameWatchPar_RetVol	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.00</u> mL/min (0.00-80 000.00) <u>0.00</u> mL/min (0.00-80 000.00)

Instruction Help:Watch on the total retentate volume. The Delta_Peak setting affects only the Less than or valley and Peak max conditions when using the Watch instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. Delta_Base setting affects only the Stable signal condition. For this condition to be activated, the signal may not vary by more than the Delta_Base value up or down over the time interval specified in the Stable signal condition in the Watch instruction.

WatchPar_ResVol

Instruction nameWatchPar_ResVol	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined) <u>0.00</u> mL
Parameter 2 name Delta_Base	(0.00-80 000.00)
	<u>0.00</u> mL (0.00-80 000.00)

Instruction Help:Watch on the reservoir volume. The Delta_Peak setting affects only the Less than or valley and Peak max conditions when using the Watch instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. Delta_Base setting affects only the Stable signal condition. For this condition to be activated, the signal may not vary by more than the Delta_Base value up or down over the time interval specified in the Stable signal condition in the Watch instruction.

WatchPar_PermVol

Instruction nameWatchPar_PermVol	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.00</u> mL (0.00-80 000.00) <u>0.00</u> mL (0.00-80 000.00)
Instruction Help: Watch on permeate vo only the Less than or valley and Peak m struction (see the UNICORN User Manual guideline, set the value to 2-3 times the n pected peak height. Delta_Base setting a For this condition to be activated, the sign ta_Base value up or down over the time i	lume. The Delta_Peak setting affects ax conditions when using the Watch in- l for more information). As a general oise level and 5-10% of the smallest ex- affects only the Stable signal condition. nal may not vary by more than the Del - nterval specified in the Stable signal

condition in the **Watch** instruction.

WatchPar_TransVol

Instruction nameWatchPar_TransVol	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined) <u>0.00</u> mL (0.00-80.000.00)
Parameter 2 name Deita_Base	<u>0.00</u> mL (0.00-80 000.00)

Instruction Help: Watch on the transfer volume. The **Delta_Peak** setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_DeltaP

Instruction name WatchPar_DeltaP	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined) <u>0.00</u> bar
Parameter 2 name Delta_Base	(0.00-5.20)
	<u>0.00</u> bar (0.00-5.20)

Instruction Help:Watch on the feed DeltaP value. The **Delta_Peak** setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_TMP

Instruction name WatchPar_TMP	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta Base	Setpoint (default underlined) <u>0.00</u> bar (0.00-5.20)
	<u>0.00</u> bar (0.00-5.20)

Instruction Help:Watch on the transmembrane pressure. The Delta_Peak setting affects only the Less than or valley and Peak max conditions when using the Watch instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. Delta_Base setting affects only the Stable signal condition. For this condition to be activated, the signal may not vary by more than the Delta_Base value up or down over the time interval specified in the Stable signal condition in the Watch instruction.

WatchPar_Flux

Instruction nameWatchPar_Flux	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.0</u> LMH (0.0-12 000.0) <u>0.0</u> LMH (0.0-12 000.0)
Instruction Help: Watch on the permeate flux rate reported by the permeate pump. The Delta_Peak setting affects only the Less than or valley and Peak max conditions when using the Watch instruction (see the UNICORN User Man- ual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. Delta_Base setting affects only the Stable signal condition. For this condition to be activated the	

signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_Shear

Instruction nameWatchPar_Shear	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0</u> s ⁻¹ (0-20 000)
_	<u>0</u> s ⁻¹ (0-20 000)

Instruction Help:Watch on the shear rate reported by the feed pump. The **Del**ta_Peak setting affects only the Less than or valley and Peak max conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

WatchPar_pNFF

Instruction nameWatchPar_pNFF	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.00</u> bar (0.00-5.20) <u>0.00</u> bar (0.00-5.20)

Instruction Help: Watch on the *pNFF* (feed pressure - permeate pressure). The *Delta_Peak* setting affects only the *Less than or valley* and *Peak max* conditions when using the *Watch* instruction (see the *UNICORN User Manual* for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. *Delta_Base* setting affects only the *Stable signal* condition. For this condition to be activated, the signal may not vary by more than the *Delta_Base* value up or down over the time interval specified in the *Stable signal* condition in the *Watch* instruction.

WatchPar_%_Flux_Drop

Instruction name WatchPar_ %_Flux_Drop	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined) <u>0.0</u> %
Parameter 2 name Delta_Base	(0.0-100.0)
	<u>0.0</u> % (0.0-100.0)

Instruction Help:Watch on the % flux drop reported by the permeate pump. The Delta_Peak setting affects only the Less than or valley and Peak max conditions when using the Watch instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. Delta_Base setting affects only the Stable signal condition. For this condition to be activated, the signal may not vary by more than the Delta_Base value up or down over the time interval specified in the Stable signal condition in the Watch instruction.

WatchPar_ConFactor

Instruction nameWatchPar_ConFac-	Group System:Settings:Alarms
tor	Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak Parameter 2 name Delta_Base	Setpoint (default underlined) <u>0.00</u> (0.00-50.00) <u>0.00</u> (0.00-50.00)
Instruction Help text:Watch on concern	tration factor. The Delta_Peak setting
affects only the Less than or valley and	Peak max conditions when using the
Watch instruction (see the UNICORN Us	er Manual for more information). As a
general guideline, set the value to 2-3 tim	nes the noise level and 5-10% of the
smallest expected peak height. Delta_Bo	ase setting affects only the Stable signal
condition. For this condition to be activat	and the signal may not vary by more than
the Delta_Base value up or down over th	the time interval specified in the Stable
signal condition in the Watch instruction	n.

WatchPar_DF_X_Fact

Instruction name Watch- Par_DF_X_Fact	Group System:Settings:Alarms Method/Manual:Alarms&Monitors
Parameter 1 name Delta_Peak	Setpoint (default underlined) <u>0.00</u> (0.00-50.00)
Parameter z name Derta_Base	<u>0.00</u> (0.00-50.00)

Instruction Help:Watch on the diafiltration factor. The **Delta_Peak** setting affects only the **Less than or valley** and **Peak max** conditions when using the **Watch** instruction (see the UNICORN User Manual for more information). As a general guideline, set the value to 2-3 times the noise level and 5-10% of the smallest expected peak height. **Delta_Base** setting affects only the **Stable signal** condition. For this condition to be activated, the signal may not vary by more than the **Delta_Base** value up or down over the time interval specified in the **Stable signal** condition in the **Watch** instruction.

14.6 Fraction collector instructions

FracParameters

Instruction name Frac Parameters	Group System →Settings →Specials
Parameter 1 name DelayVol Parameter 2 name TubeChange	Setpoint (default underlined) <u>0.000</u> mL (0.000-10.000)
_	<u>Tube</u> , DropSync, WasteBetweenTubes
Instruction Help: Parameter settings for is defined as the volume from the UV cell collector. Collection of the flow during tul ways. Tube : no synchronisation of collect ised to drop release (this should only be u WasteBetweenTubes : the flow will be d tubes.	the fraction collector. The delay volume to the end of the tubing for the fraction be change can be handled in different tion. DropSync : tube change synchron- used at flow rates generating drops). iverted to waste when moving between

FracNumberingMode

Instruction name FracNumbering- Mode	Group System →Settings →Specials
Parameter name Mode	Setpoint (default underlined) <u>Reset</u> , Continue
Instruction Help :Determines whether fraction number is reset at the end of a method or not. Reset sets Tube No to 1 after method end. Continue continues numbering from the last tube in the previous method.	

14.7 Monitor UPC-980

UV Monitor

UVLampOff

Instruction name UVLampOff	Group Method/Manual → Alarms&Monitors
Instruction Help:Sets the UV lamp perm	nanently to OFF . To restart UV lamp, the
system and computer must be re-booted	I.

рΗ

pHTempComp

Instruction name pHTempComp	Group System →Settings →Monitors
Parameter namepHTempComp	Position name (default under- lined) <u>OFF</u> , ON
Instruction Help: Sets the temperature of curate measurements during temperature temperature compensated. When using, temperature of the pH electrode is the sa since that is where the temperature is me	compensation ON or OFF . For more ac- re changes, the pH measurement can be pHTempComp it is important that the ime as that of the conductivity flow cell easured.

Cond

CondTempComp

Instruction name CondTempComp	Group System →Settings →Monitors
Parameter nameCompFactor	Position name (default under- lined) <u>2.0</u> % (0.0-9.9)

Instruction Help:Relates conductivity to temperature. The compensation consists of a compensation factor, together with a reference temperature (**CondRef-Temp**). All conductivity values will automatically be converted to the set reference temperature. The factor is expressed in percentage increase of conductivity per °C increase in temperature. If the **CompFactor** is unknown, a general approximate value of 2% can be set for many common salt buffers. 0% = off.

CondRefComp

Instruction name ConRefTemp	Group System →Settings →Monitors
Parameter nameRefTemp	Position name (default under- lined) <u>25.0</u> °C (0.0-99.9)
<i>Instruction Help</i> :Sets the reference tem ductivity values will be converted. <i>CondR</i> <i>dTempComp</i> is selected.	perature to which the measured con- RefTemp is active when a factor of Con-

14.8 Watch instructions

It is possible to set **Watch** and **Watch_Off** instructions on the following signals:**UV**, *pH*, **Cond**, **Feed_Press**, **RetenPress**, **PermPress**, **FeedFlow**, **RetFlow**, **PermFlow**, *TrfFlow*, **RetVol**, **PermVol**, **TransVol**, **DeltaP**, **TMP**, **Flux**, **Shear**, *pNFF*, **ConcFactor**, **DF_X_Fact**, **FluxDrop**, **Airsensor**, **ZeroLevel**, **AuxIn1**, **AuxIn2**, **AuxIn3**, and **AuxIn4**.

It is possible to set a *Hold_Until* instruction on the following signals:*UV*, *pH*, *Cond*, *Feed_Press*, *RetenPress*, *PermPress*, *FeedFlow*, *RetFlow*, *PermFlow*, *TrfFlow*, *RetVol*, *PermVol*, *TransVol*, *DeltaP*, *TMP*, *Flux*, *Shear*, *pNFF*, *ConcFactor*, *DF_X_Fact*, *FluxDrop*, *Airsensor*, *ZeroLevel*, *AuxIn1*, *AuxIn2*, *AuxIn3*, and *AuxIn4*.

14.9 Calibration

ZeroLS

Monitor ZeroLS	FunctionZero calibration of level sen- sor
Text 1Sets the level sensor reading to zero. See Help	

UPC

pН

Monitor pH	FunctionCalibration of the pH electrode
Text 1Calibrate pH electrode for buffer 1. See <i>Help</i> . Calibrate pH electrode for buf fer 2. See <i>Help</i> .	
Parameter 1 nameReference value 1 Parameter 2 nameReference value 2	Input (default underlined) <u>0.0000</u> pH (0-14) Input (default underlined) <u>0.0000</u> pH (0-14)
ResultCalibrated electrode slope ResultAsymmetry potential at pH 7	Value 10.0% Value 20.0 mV

Instruction Help

The pH Monitor is calibrated using standard buffer solutions in a two point calibration. The difference between the buffers should be at least 1 pH unit. A new electrode typically has a slope of 95-102% and an asymmetry potential within \pm 30mV. As a rule, when an electrode has an asymmetry potential outside of \pm 60mV and a slope lower than 80%, and no improvements can be achieved by cleaning, it should be replaced.

Cond_Calib

Monitor Cond_Calib	FunctionCalibration of the conductivi- ty cell constant
Text 1Determination of cell constant for Cond cell. See Help.	

Parameter nameReference value 1	Input (default underlined) <u>1.0000</u> mS/cm (1-999.9)
ResultCalibrated electrode slope	Value1/cm

Instruction Help

Calibration of conductivity cell. Normally it is not necessary to adjust the cell constant as the flow cell is pre-calibrated on delivery. Set **CondTempComp** to 0 in **System** → **Settings** prior calibration. The temperature sensor must be calibrated before adjusting the cell constant. Fill the flow cell with calibration solution of 1.00 M NaCl. Wait until the temperature is constant in the range 20-30 °C. Enter the theoretical conductivity value according to graph in the *Operating Instructions*.

Cond_Cell

Monitor Cond_Cell	FunctionEnter a new cell constant	
Text 1Add cell constant value of a new Cond cell. See <i>Help</i> .		
Parameter nameReference value	Input (default underlined) <u>40.0</u> 1/cm (0.1-300)	
Instruction Help		
When replacing the current cell with a new conductivity cell, enter the new cell constant (shown on the packaging.) In case the packaging has been discarded, perform the Cond_Calib .		

Cond_Temp

Monitor Cond_Temp	FunctionTemperature sensor
Text 1Calibrate the temperature sensor in the conductivity flow cell. See Help.	
Parameter nameReference value	Input (default underlined) <u>0.000</u> °C (-5-60)

Instruction Help

Calibration of the temperature sensor in the conductivity flow cell is only necessary if very high accuracy measurements are needed. Place the conductivity flow cell together with a precision thermometer inside a box or empty beaker to make sure that they are not exposed to drafts. Leave them for 15 min to let the temperature stabilize. Read the temperature on the thermometer and enter this as the reference value.

TrfPress

Monitor TrfPress	FunctionPressure calibration			
Text 1Sets the pressure reading on the transfer pressure sensor to zero. See Help.				
Parameter nameReference value	Input (default underlined) <u>0.00</u> bar (-5.0-60.0)			
Instruction Help				
Calibrate pressure offset according to step 1:Calibrate pressure offset for Trans- fer pump . Click the Start Calibration button. For details see ÄKTA Instrument Handbook				

15 System components

About this chapter

This chapter contains information on the component parts of the ÄKTAcrossflow.

In this chapter

Section		See page
15.1	Pump P-982 and P-984	318
15.2	Valves	321
15.3	Reservoirs	326
15.4	pH electrode and cell holder	328
15.5	Monitor UPC-980 and UV cell	329
15.6	Conductivity cell	330
15.7	Sensors	331

15.1 Pump P-982 and P-984

Pump P-982 and P-984 are high performance laboratory pumps for use in applications where accurately controlled liquid flow is required. Twin reciprocating pump heads work in unison to deliver a smooth and pulse-free flow.

P-982 is used as the transfer pump (module A) and as the permeate pump (module B), P-984 is used as the feed pump (module A and B).

Pump	Pressure range	Flow rate range
P-982 (two pump heads)	0–52 kPa (5.2 bar, 75.4 psi)	0.1–200 mL/min
P-984 (four pump heads)	0–52 kPa (5.2 bar, 75.4 psi)	1–600 mL/min

Pump heads

The individual pump heads are identical but are actuated in opposite phase to each other by individual stepper motors controlled by a microprocessor. This gives a continuous, low pulsation liquid delivery.

Each pump head is equipped with an inlet check valve and an outlet check valve for the liquid flow. In addition, each pump head has an outlet check valve for the rinsing system flow.

Liquid is drawn up into the pump head through a non-return inlet check valve by the action of the piston being withdrawn from the pump chamber.

On the delivery stroke of the piston, the inlet check valve is sealed by the pressure developed and liquid is forced out through a similar check valve at the outlet.

Leakage between the pump chamber and the drive mechanism is prevented by a piston. The piston is continuously lubricated by the presence of liquid. To prevent any deposition of salts from aqueous buffers on the pistons, the low pressure chamber behind the piston can be flushed continuously with a low flow of 20% ethanol.

The pump head is made of titanium alloy.

Pump principle

Each piston is driven by a simple robust cam (eccentric). These cams are driven by stepper motors via timing belts. The motor speed is varied to achieve linear movement and compensation for compressibility. This produces the particular motor sound. This system guarantees an accurate, low pulsation flow over the entire flow rate range, independent of the back pressure. When an increase in flow rate is programmed, the motor speed accelerates gradually, giving a soft start and building up speed to the flow rate required. When a decrease in flow rate is programmed, the motor speed slows rapidly to the lower flow rate.

15.2 Valves

Membrane valves

Each valve block comprises three or four stepper-motor actuated membrane valves with open/close functionality. The valves are located in valve blocks to minimize holdup volumes and dead volumes.

A valve block consists of a connection block containing the ports and the membranes, and a mechanical housing containing the stepper motors, cams and actuating pistons. The membranes are made of EPDM.

The valve blocks have different numbers of inlet and outlet ports depending on their position in the flow path.

- Inlet valves T-VB-In: 1–4
- Inlet valves T-VB-In: 5–8
- Outlet valves P-VB-Out: recycle, 1, 2, 3 (pressure relief valve)

One of the outlet valves, P-VB-Out 3, is used as pressure relief valve with the opening pressure 7 bar (102 psi).

Rocker valve

The valve block comprises three stepper motor actuated diaphragm open/close valves. The diaphragm valve type comprises a membrane coated rocker.

The rocker closes against the flow through the inlet port with the closing force controlled by the stepper motor. This design results in linear control characteristics of the valve.

The valve block has different numbers of inlet and outlet ports depending on its position in the flow path.

• Outlet valves R-VB-Out: 1 (pressure relief valve), 2, 3.

One of the outlet valves, R-VB-Out 1, is used as pressure relief valve with the opening pressure 7 bar (102 psi).

Valve block types

There are four different types of membrane valve blocks. The valve blocks have UNF 5/16" female ports. The following illustrations show the flow path in the valve blocks and where the valves are located. The valves are normally closed, with the exception of the open recirculation valve in the retentate valve block.

• Transfer valve block 1, T-VB-In 1, 2, 3 and 4

From buffer/sample containers and air sensor

• Transfer valve block 2, T-VB-In 5, 6, 7 and 8

From buffer/sample containers

- **Note:** In transfer valve block 1 and 2, only one valve can be open at a time.
- Retentate valve block, R-VB-Out 1, 2 and 3

• Permeate valve block, P-VB-Out 1, 2, 3 and recycle

To permeate containers and recycle

15 System components 15.2 Valves

2-way transfer purge valve

The 2-way valve is a diaphragm type and comprises a membrane coated rocker. Actuated by a solenoid, the rocker blocks one of the two outlet ports in a flip-flop manner.

The inlet port is positioned at the side of the valve body, while the outlet ports are positioned at the top and bottom of the valve body.

The transfer purge valve directs the liquid flow either from transfer line or permeate recycle towards the reservoir (default) or waste.

Pressure modulating valves R-PCV and P-PCV

The pressure control valves enable a throttling of the liquid flow in order to raise the pressure upstream the valve.

Mechanically, these values are similar to the 2-way value such that the throttling of the flow is achieved by the membrane coated rocker. However, compared to the 2-way switch value, the pressure control value has only one inlet and one outlet port.

The rocker closes against the flow through the inlet port with the closing force controlled by the solenoid. This design results in linear control characteristics of the valve. Furthermore, the pressure upstream of the valve is maintained irrespective of changes in flow rate.

- Retentate control valve (R-PCV)The retentate control valve R-PCV is used to accurately control the retentate pressure over the pressure range 0.1 to 5.2 bar. Hereby, the transmembrane pressure (TMP) can be adjusted. In addition, the R-PCV can operate as open/close valve in product recovery and system cleaning procedures.
- Permeate control valve (P-PCV)The main task of the permeate control valve P-PCV is to modulate the pressure downstream of the permeate pump in order to guarantee accuracy in the permeate flow rate.For proper operation of the check valves, the pressure downstream of the pump must be greater than the pressure upstream the pump. Therefore, the P-PCV is controlled such that it always maintains a higher pressure downstream of the pump.

Flow restrictor in transfer line

A flow restrictor is positioned downstream of the transfer pump for proper operation of the check valves at the pump heads. The restrictor generates a minimum constant back pressure of 3 bar.

15.3 Reservoirs

The reservoir accommodates the liquid/sample to be processed. It provides a gentle, but efficient mixing of the process liquid with returning retentate and additional liquid added via the transfer line. Permeate may be recycled into the reservoir for achieving steady-state conditions during process development studies.

The reservoirs are equipped with a float to prevent vortex formation and foaming such that operation at lowest recirculation volume with high flow rate is facilitated.

There are two sizes of reservoirs:

- 350 mL (375 mL without float)
- 1100 mL (1200 mL without float) (optional)

Each reservoir has connections for the liquid flow positioned at the reservoir bottom end plate. There is one outlet for delivering liquid to the feed pump via a manifold. The outlet is placed off-centre at the bottom of the reservoir to prevent vortex formation. The outlet is connected to a conduit/manifold that distributes the liquid to the four pump heads of the feed pump. The retentate return is positioned such that liquid is injected tangentially to the bottom surface.

The lid can be easily opened, for example for manual sampling of the retentate. It also has a connection for ventilation.

To open the lid:

Step Action

Move the lower part of the jointed hook outwards while pushing slightly the lid downwards.

The reservoir is mounted on a reservoir holder which comprises a motor unit for a magnetic stirrer-bar. The stirrer can be used with both reservoirs to improve mixing characteristics. Recommended dimensions for the stirrer are:

- 350 mL reservoir: length of stirrer 30 mm and o.d. 6 mm
- 1100 mL reservoir: length of stirrer 35 mm and o.d. 6 mm

The appropriate mixing rate is a function of application and retentate volume and can be adjusted by the control software. At low retentate volume, the stirrer and the float will be in contact such that the stirrer will rotate the float.

Under these conditions, a low mixing rate is selected as default by the control software. At higher retentate volume where the float is not in contact with the stirrer, the user can select a higher mixing rate. The following rates are recommended as maximum mixing rates that provide sufficient mixing for all conditions:

- 350 mL reservoir: 200 rpm
- 1100 mL reservoir: 300 rpm

As default, the UNICORN control software adjusts the mixing rate automatically depending on the actual retentate volume.

An air filter (vent filter) can be connected to the top of the reservoir.

The reservoir consists of the following material:

- glass tube: borosilicate
- bottom end plate, top flange and lid: polyetherimide
- sealing lid: thermoplastic elastomer
- float: polypropylene
- stirrer: polytetrafluoroethylene

15.4 pH electrode and cell holder

The pH electrode is optimized for continuous pH measurement in the permeate flow path. The electrode is of the sealed combination double junction type. It contains a sealed Ag/AgCl reference, which cannot be refilled, an internal electrolyte bridge of 4 M KCl saturated with Ag/AgCl, an outer electrolyte bridge of 1 M KNO3, an annular ceramic reference junction, and a low profile pH membrane.

The pH electrode has a glass tip and the cell holder is made of titanium. The whole assembly is replaceable.

The pH electrode should be calibrated regularly. This procedure is described in *Section 3.8 Calibrate the pH electrode, on page 53.*

15.5 Monitor UPC-980 and UV cell

The UV cell is designed for continuous measurement of UV absorbance. The UV monitoring system provides high performance detection for the wavelength of 254 or 280 nm. Additional filters can be purchased to provide monitoring of the wavelengths 313, 365, 405, 436, and 546 nm. With the optional zinc lamp, the wavelength 214 nm can be monitored.

The UV cell housing is made of PEEK. Other wetted parts are made of glass and titanium.

UV optical unit

The UV optical unit houses the lamp (Zn or Hg), the wavelength filter and the UV flow cell. The light beam is directed through a flow-through cuvette to a photodetector. The photodetector current is fed to the signal processing circuitry in the module.

The reference signal comes from the same point in the lamp as the signal measuring the sample, thus assuring a stable baseline by eliminating the effects of variations in lamp intensity.

The Hg lamp emits light only at certain wavelengths. It does not emit light at 280 nm, so for this wavelength, the light is converted at a fluorescent surface before it passes the filter. On the lamp housing, there is a special exit for 280 nm light, which means that the lamp position needs to be changed when working with this wavelength.

For 214 nm wavelength, a Zn lamp is used. This lamp is larger than the Hg lamp and is therefore mounted in a larger lamp housing.

The lamp connectors are keyed to inform the monitor software of which lamp type is connected.

15.6 Conductivity cell

The cell has two cylindrical titanium electrodes positioned in the flow path of the cell. An alternating voltage is applied between the electrodes and the resulting current is measured and used to calculate the conductivity of the buffer. The system controls the AC frequency and increases it with increasing conductivity between 50 Hz and 50 kHz, giving maximum linearity and true conductivity values.

The conductivity is automatically calculated by multiplying the measured conductance by the cell constant of the cell. The cell constant is precalibrated on delivery but can be measured with a separate calibration procedure. This procedure is described in *Section 3.9 Calibrate the conductivity cell, on page 55.*

One of the electrodes has a small temperature sensor for measuring the temperature of the buffer in the cell. Temperature variations influence the conductivity and in some applications, when very precise conductivity values are required, it is possible to program a temperature compensation factor that recalculates the conductivity to a set reference temperature.

15.7 Sensors

The $\ddot{\mathsf{A}}\mathsf{KT}\mathsf{A}\mathsf{crossflow}$ system is equipped with four pressure sensors, one level sensor, and one air sensor.

Pressure sensors

Pres- sure sensor P _F	Located close to the CFF cassette/car- tridge in the feed line to measure the feed pressure.	
Pres- sure sensor P _R	Located close to the CFF cassette/car- tridge in retentate line to measure the re- tentate pressure.	
Pres- sure sensor P _P	Located close to the CFF cassette/car- tridge in the permeate line to measure the permeate pressure.	
Pres- sure sensor P _T	Located upstream of the reservoir, the transfer pressure sensor is used to main- tain safe operation by measuring the pressure in the reservoir.	
	The liquid chamber in the P _T sensor hous- ing is equipped with a thin titanium mem- brane. A strain gauge is attached to the rear side of the membrane. When the liq- uid pressure increases, the titanium membrane bulges, which is detected by the strain gauge.	

The pressure is shown on the computer display. To protect the system, a maximum and minimum pressure limit can be set in UNICORN for pressure sensors $\mathsf{P}_{\mathsf{F}},\mathsf{P}_{\mathsf{R}}$ and $\mathsf{P}_{\mathsf{P}}.$

The pressure sensors have a pressure range of 0–10 bar (100 kPa, 145 psi). The pressure sensor housing is made of PEEK. Other wetted parts are made of titanium and stainless steel.

Reservoir level sensor

The reservoir level sensor is located in the reservoir bottom end plate. The level sensor also has the function of low volume alarm for the reservoir.

The signal of the level sensor is used to maintain a consistent volume in the reservoir during constant volume operations (fed batch concentration and diafiltration). Furthermore, the level sensor facilitates efficient product removal procedures at the end of the filtration process in case that any entrainment of air in the recirculation line is not desirable.

The level sensor has a pressure range of 0-100 mbar (10 kPa, 1.45 psi).

A temperature sensor is integrated with the reservoir level sensor, and allows for continuous measurement of the liquid feed to the CFF cassette/cartridge.

CAUTION

The reservoir level sensor is highly sensitive. Do not insert any objects into the cavity in the bottom end plate of the reservoir since this may damage the level sensor.

Air sensor 925

The sample air sensor is a high precision monitor designed for continuous monitoring of air bubbles in the flow path for the sample inlet. The air sensor is made of PEEK.

The air sensor makes sure that the maximum volume of external feed can be transferred into the system without any risk for introducing air into the transfer line. When air is detected, the system is either paused, or performs an action that is set in the method.

Avoiding air in the transfer line is necessary to provide the high volume accuracy of the transfer pump and thereby the accuracy of the retentate volume content.

Appendix A Membrane and cartridge selection

Cell processing

When selecting membranes for clarification, smaller pore size filters resist fouling more than filters with larger pore sizes such as 0.45 or 0.65 μ m. A general guideline is to select the smallest pore size ratings that is at least 10× larger than the size of the target protein in it largest state or longest dimension. When working with lysates, which can contain a wide range of particle sizes and many types of proteins and sticky cell components, choosing a small pore size can help prevent fouling of the membrane pores.

When selecting cartridges, the presence of particles in the feed stream requires the selection of short path length cassettes (30 to 60 cm) with large lumen diameters (0.75 to 1.0 mm). See Section B Tubing specifications, on page 334.

Concentration and diafiltration

A membrane with a molecular weight cutoff that is too large will allow the molecule of interest to pass through and significantly reduce yields. Conversely a membrane with too small an molecular weight cutoff will reduce flux and lead to slower processing times, oversized systems, increased capital cost, and plant space requirements, working volume and hold-up volume. For typical membrane-based crossflow applications, the membrane pore size selection is based on the size of the target molecule.

The general guideline for selecting a membrane for product concentration is to start with a molecular weight cutoff that is 3 to 5 times smaller than the target molecule. For example, a 50 kD or 30 kD membrane would be a suitable choice to retain IgG (160 kD), and a 30 kD or 10 kD membrane would be a suitable choice for albumin (66 kD).

Appendix B Tubing specifications

The ÄKTAcrossflow is supplied with two tubing kits for the recirculation line to accommodate applications and filters run at low and high flow rates as follows:

- Tubing with an inner diameter of 1.7 mm (Small) for low flow rate applications (typically < 80 mL/min feed flow rate)
- Tubing with an inner diameter of 2.9 mm (Large) for high flow rate applications (typically > 80 mL/min feed flow rate)

The system holdup volume and thus the working volume is minimized when using tubing with the small diameter.

Note: The working volume is reservoir volume + system holdup volume + cassette/cartridge holdup volume.

Filter cassette/cartridge	Application	Recommended tubing
Flat sheet, 100 cm ²	UF/DF	S = i.d. 1.7 mm
Flat sheet > 100 cm ²	UF/DF	L = i.d. 2.9 mm ¹
Hollow fiber, Start AXH	UF/DF	S = i.d. 1.7 mm
Hollow fiber, Start AXM	UF/DF	S = i.d. 1.7 mm ²
Hollow fiber, Start AXM	MF	L = i.d. 2.9 mm

Table 16.1: Recommended combinations of filters and tubing diameters

¹ Small i.d. tubing might be applicable depending on application.

² Large i.d. tubing may be applicable for high flow/high viscosity.

Table 16.2: Recommended tubing for Start AXM hollow fiber membra	ane cartridges
--	----------------

Tub- ing	length (mm)	o.d. (mm)	i.d. (mm)	Vol- ume (mL)	Mate- rial	Location from	Location to
F1S	300	3	1.7	0.68	PVDF	Valve block R- VB	Cartridge, feed inlet

Tub- ing	length (mm)	o.d. (mm)	i.d. (mm)	Vol- ume (mL)	Mate- rial	Location from	Location to
F1L	300	4.76 (3/16")	2.9	1.98	ETFE		
R1S	200	3	1.7	0.45	PVDF	Cartridge, re-	Sensor P _{R,} in-
R1L	200	4.76 (3/16")	2.9	1.32	ETFE	outlet	let
P1S	155	3	1.7	0.35	PVDF	Cartridge,	Sensor P _{P,} in-
P1L	150	4.76 (3/16")	2.9	0.99	ETFE	permeate outlet	let

Table 16.3: Recommended tubing for Start AXH hollow fiber memb	orane cartridges
--	------------------

Tub- ing	length (mm)	o.d. (mm)	i.d. (mm)	Vol- ume (mL)	Mate- rial	Location from	Location to
F1S	200	3	1.7	0.45	PVDF	Valve block R- VB	Cartridge, feed inlet
R1S	200	3	1.7	0.45	PVDF	Cartridge, re- tentate outlet	Sensor P _{R,} in- let
P1S	155	3	1.7	0.35	PVDF	Cartridge, permeate outlet	Sensor P _{P,} in- let

Retentate volume setup

The retentate volume is the sum of the retentate holdup volume and the liquid volume in the reservoir:

RetVol = RetentateHoldupVolume + ResVol

The reservoir volume in the ÄKTAcrossflow system is based on pumped volumes reported by the pumps. In order to calculate the correct retentate volume, user-defined input on the retentate holdup volume is required. The retentate holdup volume is the sum of system holdup volume (in components and tubing) and the retentate volume in the filter: **RetentateHoldupVolume** = system holdup volume + filter volume The system holdup volume depends on the tubing configuration.

System holdup volume and recommended minimum working volume

Recircula- tion tub- ing kit	Feed tub- ing	Retentate tubing	Permeate tubing	System holdup volume (mL) ¹	Minimum w ume (mL) ²	orking vol-
					350 mL reservoir	1100 mL reservoir
Small i.d. (1.7 mm)	F1S 200	R1S 200	P1S 155	18.2	24 (22.2)	40 (26.2)
Small i.d.	F1S 300	R1S 200	D1C 155	10/	24 (22 4)	AE (26 A)
(1.7 mm)	F1S 200	R1S 300	F13133	10.4	24(22.4)	45 (20.4)
Large i.d.	F1L 200	R1L 300	P1L 150	25.8	32 (29.8)	50 (33.8)
(2.9 mm)	F1L 300	R1L 200				

¹ System holdup volumes do not account for filter volume: **RetentateHoldupVolume** = system holdup volume + filter volume.

² Recommended minimum working volume accounts for accuracy in control and measurement of the retentate volume. The figures in brackets state typical values for the lowest possible working volume (excluding filter volume).

Hollow fiber cartridges with UNF fittings

Name	Cut- off	Inner diam- eter (mm)	Lengt h (cm)	Num- ber of fibers	Nom- inal area (cm ²)	Feed flow rate 2000- 16000 s ⁻¹	Flux range low = 10 LMH	Flux range high = 80 LMH	30-200L /m ² vol chal- lenge
Start AXH	3 kD	0.5	60	4	40	8.5-66 mL/mi n	0.7 mL/mi n	5.3 mL/mi n	0.12-0.8 0
Start AXH	10 kD	0.5	60	4	40	8.5-66 mL/mi n	0.7 mL/mi n	5.3 mL/mi n	0.12-0.8 0
Start AXH	30 kD	0.5	60	4	40	8.5-66 mL/mi n	0.7 mL/mi n	5.3 mL/mi n	0.12-0.8 0
Start AXH	100 kD	0.5	60	4	40	8.5-66 mL/mi n	0.7 mL/mi n	5.3 mL/mi n	0.12-0.8 0
Start AXH	300 kD	0.5	60	4	40	8.5-66 mL/mi n	0.7 mL/mi n	5.3 mL/mi n	0.12-0.8 0
Start AXH	500 kD	0.5	60	4	40	8.5-66 mL/mi n	0.7 mL/mi n	5.3 mL/mi n	0.12-0.8 0
Start AXH	750 kD	0.5	60	4	40	8.5-66 mL/mi n	0.7 mL/mi n	5.3 mL/mi n	0.13-0.8 4
Start AXM	500 kD	1.0	30	6	50	70-60 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	750 kD	1.0	30	6	50	70-60 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0

Name	Cut- off	Inner diam- eter (mm)	Lengt h (cm)	Num- ber of fibers	Nom- inal area (cm ²)	Feed flow rate 2000- 16000 s ⁻¹	Flux range low = 10 LMH	Flux range high = 80 LMH	30-200L /m ² vol chal- lenge
Start AXM	3 kD	0.5	30	12	50	25-20 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	10 kD	0.5	30	12	50	25-20 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	30 kD	0.5	30	12	50	25-20 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	100 kD	0.5	30	12	50	25-20 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	300 kD	0.5	30	12	50	25-20 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	500 kD	0.5	30	12	50	25-20 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXH	750 kD	0.5	30	12	50	25-20 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	0.1 μm	1.0	30	6	50	70-60 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0

Name	Cut- off	Inner diam- eter (mm)	Lengt h (cm)	Num- ber of fibers	Nom- inal area (cm ²)	Feed flow rate 2000- 16000 s ⁻¹	Flux range low = 10 LMH	Flux range high = 80 LMH	30-200L /m ² vol chal- lenge
Start AXM	0.2 µm	1.0	30	6	50	70-60 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	0.45 μm	1.0	30	6	50	70-60 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0
Start AXM	0.65 μm	0.75	30	8	50	40-32 0 mL/mi n	0.8 mL/mi n	6.7 mL/mi n	0.15-1.0

Appendix C Technical specifications

Transfer pump and permeate pump P-982

Flow rate	0.1-200 mL/min
Increment	0.1 mL
Pressure	0–520 kPa (5.2 bar, 75.4 psi)
Flow rate accuracy	0.5% actual volume within range (2-200 mL/min, 3.0 - 5.0 bar)
Pulsation	Max. ± 10% at inlet side (with inlet flow 10 mL/min, 4 bar) Max. ± 20% at outlet side (with outlet flow 10 mL/ min, 4 bar)
Flow rate reproducibility	rsd < 0.15% (0.1–200 mL/min, 3.0 - 5.0 bar)
Viscosity	0.8 - 5.0 cP
Internal volume	3050 µL including check valves

Feed pump P-984

Flow rate	0.1-600 mL/min
Increment	0.1 mL
Pressure	0–520 kPa (5.2 bar, 75.4 psi)
Flow rate accuracy	< ± 2% actual volume within range (2 - 600 mL/min, 2.0 - 5.2 bar)

Pulsation	Max. \pm 10% at inlet side (with inlet flow 10 mL/min, 4 bar)
	Max. \pm 20% at outlet side (with outlet flow 10 mL/ min, 4 bar)
Flow rate reproducibility	rsd < 0.3% (2 - 600 mL/min, 2.0 - 5.2 bar)
Viscosity	0.8-5.0 cP
Internal volume	6100 μL including check valves
Liquid exchange be- tween product side and rinsing system	< 4.5 ppm of pumped volume

UV measurement, Monitor UV-980

UV cell path length	2 mm
UV cell flow area	1.6 mm ²
UV cell total holdup vol- ume	0.21 mL
Baseline adjust	Adjustable 0–100% of full scale
Static drift	± 100 × 10 ⁻⁶ AU/h at 254 nm
Autozero range	-0.2-2.0 AU
Absorbance range	0.01–5 AU

pH measurement, Monitor pH/ C-980

pH range	0-14
	(spec. valid between 2 and 12)

Accuracytemperature compensatednot tem- perature compensated	±0.1 pH units within 4°C - 40°C ±0.2 pH units within 15°C - 25°C ±0.5 pH units within 4°C-15°C and 25°C-40°C
Response time	Max. 10 s (0–95% of step)
Long-term drift	Max. 0.1 pH units/10 h
Flow rate sensitivity	Max. 0.1 pH units within 0–100 mL/min
Max. pressure	0.5 MPa (5 bar, 72 psi)
Internal volume, pH cell holder	240 µL

Conductivity measurement, Monitor pH/C-980

Conductivity range	1 µS/cm to 250 mS/cm
Deviation from theoreti- cal conductivity	Max. \pm 2% of full scale calibrated range or $\pm 10\mu\text{S/cm}$ whichever is greater in the range 1 $\mu\text{S/cm}$ to 250 mS/cm
Reproducibilityshort- termlong-term	Max. ± 1% or ± 5 μS/cm Max. ± 3% or ± 15 μS/cm
Noise	Max. $\pm 0.5\%$ of full scale calibrated range
Response time	Max. 3 s (0-95% of step)
Flow rate sensitivity	± 1% within 0-400 mL/min
Max. pressure	2 MPa (20 bar, 290 psi)
Internal volume, conduc- tivity cell	180 µL

Membrane valves

кРа (5.2 bar, 75.4 psi)

Internal volume T-VB 1 and 2	570 μL (closed) 570 μL (closed)
P-VB	
Valve principle	Stepper motor-controlled membrane

Rocker valve

Max. pressure	520 kPa (5.2 bar, 75.4 psi)
Internal volume	540 µL (closed)
R-VB, retentate side	390 µL (closed)
R-VB, feed side	
Valve principle	Stepper motor-controlled membrane

Control valves R-PCV and P-PCV

Max. pressure	520 kPa (5.2 bar, 75.4 psi)
Internal volume R-VB, retentate side R-VB, feed side	540 μL, 520 μL (closed) 540 μL, 520 μL (closed)
Valve principle	Solenoid-actuated rocker

Flow restrictor (Transfer line)

Back pressure	Min. 3 bar
Internal volume	570 µL
Valve principle	Spring-loaded cone

C Technical specifications

Transfer purge valve

Max. pressure	520 kPa (5.2 bar, 75.4 psi)
Internal volume	600 μL, 580 μL (closed)
Valve principle	Solenoid-actuated rocker, membrane coated

Reservoirs

Max. volume	375 mL, 1200 mL350 mL, 1100 mL
Without float	
With float	
Mixing principle	Magnetic stirrer

Pressure sensors P_F, P_R, P_P

Pressure range	Up to 1 MPa (10 bar, 145 psi)
Pressure accuracy	± 0.01 bar
Internal volume:P _F	565 µL
P _R , P _P	340 µL

Pressure sensor P_T

Pressure range	0–2.5 MPa (25 bar, 362 psi)
Pressure accuracy	< ± 2%
Internal volume	294 µL

Reservoir level sensor

Pressure range	0–100 mbar (10 kPa, 1.45 psi)
----------------	-------------------------------

Reproducibility in empty reservoir detection	±0.2 mL
Drift under constant re- tentate volume opera- tion	\pm 0.1 mbar (10 Pa) over 4 hours, valid for temperature changes \leq 1 °C/hour (for water, a hydrostatic pressure of 10 Pa corresponds to approx. 2.8 mL in the small reservoir, and 6.4 mL in the large reservoir)

Temperature sensor

Integrated with reservoir level sensor

Accuracy	±1°C
	(valid for temperature difference < 5°C between liq- uid temperature and ambient temperature)

Air sensor 925

Max. pressure	2.5 MPa (25 bar, 362 psi)
Internal volume	190 µL

Index

В

Buffer conditioning description, 97 preproduct step dialog, 108 preproduct visualization, 122

С

Cell harvesting, 15 Cell washing, 15 Concentration visualization, 168 Conductivity cell calibration, 55

D

Diafiltration visualization, 168

F

Filter CIP description, 94, 178 postproduct visualization, 194 preproduct step dialog, 106 preproduct visualization, 116 Flat sheet cassettes assembly, 33 basic settings, 103 description, 24 Flush description, 178 postproduct visualization, 193

Н

Hollow fibre cartridges assembly, 33 basic settings, 100 description, 24 recommended, 337–339

l

Important user information, 7

L

Level sensor calibration, 47 Lysate clarification, 16

Μ

Microfiltration desciption, 15

Ν

Notes and tips, 8

Ρ

pH electrode calibration, 53 Piston rinse system cleaning, 39 sanitization, 218 use, 39 Pressure sensor calibration, 52

R

Reservoir float sanitization, 218 Rinsing description, 94 preproduct step dialog, 106 preproduct visualization, 114

S

Safety notices, 7 Storage description, 181 postproduct visualization, 199

Т

Temperature sensor calibration, 55 Transmembrane pressure, 11 Tubing connect to cartridge, 34 Typographical conventions, 8

U

Ultrafiltration description, 13 experimental planning, 202 results, 208 UNICORN base, 60 create method, 62 method description, 59 system control module, 89 text instructions, 73 watch and hold, 60

W

Water flush description, 95, 179 postproduct visualization, 197 preproduct step dialog, 106 preproduct visualization, 119 Water flux test description, 96, 180 postproduct visualization, 198 preproduct step dialog, 107 preproduct visualization, 120

GE Healthcare Bio-Sciences AB Björkgatan 30, 751 84 Uppsala Sweden

www.gelifesciences.com

GE, the GE Monogram, ÄKTA, ÄKTAcrossflow, and UNICORN are trademarks of General Electric Company.

All other third-party trademarks are the property of their respective owners.

© 2005-2020 General Electric Company

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

For local office contact information, visit www.gelifesciences.com/contact

29360935 AA V:2 12/2019